Biogas is a renewable energy resource produced during the anaerobic digestion of various organic substrates. A wide community of microorganisms is involved, including methanogens. These Archaea are the biologic key to the process because they accomplish the methane-forming reaction. Despite its crucial role, the microbiome inside the digester is poorly understood. The aim of this work is to develop bioindicators of efficiency for the anaerobic process through the quantification and characterisation of the methanogens and sulphate-reducing bacteria. From a full-scale digester fed with organic wastes, 31 samples were collected. Temperature, pH, acidity, alkalinity and biogas quantity and quality were monitored over time. The methanogens were detected from the samples both in total and as belonging to different taxa units. These evaluations, by real-time quantitative PCR (RT-qPCR) methods, produced valuable results for Methanosarcina, Methanosaeta, Methanocorpusculaceae and sulphate-reducing bacteria. Methanosarcina was the most abundant family, followed by Methanocorpusculaceae and then Methanosaeta. The methanogen taxa are significantly and directly correlated with each other (p?<?0.05). Methanosaeta and Methanocorpusculaceae are present in significantly different amounts at different temperatures. While Methanosaeta levels also change when the organic load increases (t test, p?<?0.05), Methanosarcina is more tolerant, and its levels are quite constant. Methanosarcina and Methanosaeta are proposed to be bioindicators of the stability of the process (the first) and of susceptibility (the second) to detect early sufferance conditions in the digester. These methods will be useful in the control and optimisation of an eco-friendly waste-to-energy system. 相似文献
We have sequenced the nonstructural protein coding region of Semliki Forest virus temperature-sensitive (ts) mutant strains ts1, ts6, ts9, ts10, ts11, ts13, and ts14. In each case, the individual amino acid changes uncovered were transferred to the prototype strain background and thereby identified as the underlying cause of the altered RNA synthesis phenotype. All mutations mapping to the protease domain of nonstructural protein nsP2 caused defects in nonstructural polyprotein processing and subgenomic RNA synthesis, and all mutations in the helicase domain of nsP2 affected subgenomic RNA production. These types of defects were not associated with mutations in other nonstructural proteins. 相似文献
mGlu1 and mGlu5 metabotropic glutamate receptors are expressed in the vertebrate retina, and are co-localized in some retinal neurons. It is believed that both receptors are coupled to polyphosphoinositide (PI) hydrolysis in the retina and their function may diverge in some cells because of a differential engagement of downstream signaling molecules. Here, we show that it is only the mGlu1 receptor that is coupled to PI hydrolysis in the retina. We used either bovine retinal slices or intact mouse retinas challenged with the mixed mGlu1/5 receptor agonist, DHPG. In both models, DHPG-stimulated PI hydrolysis was abrogated by the selective mGlu1 receptor antagonist, JNJ16259685, but was insensitive to the mGlu5 receptor antagonist, MPEP. In addition, the PI response to DHPG was unchanged in the retina of mGlu5?/? mice but was abolished in the retina of crv4 mice lacking mGlu1 receptors. Stimulation of the mitogen-activated protein kinase pathway by DHPG in intact mouse retinas were also entirely mediated by mGlu1 receptors. Our data provide the first example of a tissue in which a biochemically detectable PI response is mediated by mGlu1, but not mGlu5, receptors. Hence, bovine retinal slices might be used as a model for the functional screening of mGlu1 receptor ligands. In addition, the mGlu1 receptor caters the potential as a drug target in the experimental treatment of degenerative disorders of the retina.
l-Methionine sulfoximine (MSO) and dl-Phosphinothricin (PPT), two non-proteinogenic amino acids known as inhibitors of Glutamine Synthetase, cause a dose-dependent increase in the phosphorylation of the mTOR substrate S6 kinase 1. The effect is particularly evident in glutamine-depleted cells, where mTOR activity is very low, but is detectable for PPT also in the presence of glutamine. The stimulation of mTOR activity by either MSO or PPT is strongly synergized by essential amino acids. Thus, the non-proteinogenic amino acids MSO and PPT are mTOR activators. 相似文献
Statherin is a multifunctional polypeptide specific of human saliva involved in oral calcium homeostasis, phosphate buffering and formation of protein networks. Salivary P-B peptide is usually included into the basic proline-rich protein family but it shows some similarities with statherin and its specific biological role is still undefined. In this study, various fragments and derivatives of statherin and P-B peptide were consistently detected by RP-HPLC ESI-IT MS in 23 samples of human saliva. They were: statherin mono- and non-phosphorylated, statherin Des-Phe(43) (statherin SV1), statherin Des-Thr(42),Phe(43), statherin Des-Asp(1), statherin Des(6-15) (statherin SV2), statherin Des(1-9), statherin Des(1-10), statherin Des(1-13) and P-B Des(1-5). Statherin SV3 (statherin Des(6-15), Phe(43)) was detected only in one sample. Identity of the fragments was confirmed either by MS/MS experiments or by enzymatic digestion or by Edman sequencing. Detection of the fragments suggests that statherin and P-B peptide are submitted to post-translational proteolytic cleavages that are common to other classes of salivary proteins. 相似文献
Aim We present a model to account for self‐assembly of the slough–ridge–tree island patterned landscape of the central Everglades in southern Florida via feedbacks among landforms, hydrology, vegetation and biogeochemistry. We test aspects of this model by analysing vegetation composition in relation to local and landscape‐level drivers. Location We quantified vegetation composition and environmental characteristics in central Water Conservation Area (WCA) 3A, southern WCA‐3A and southern WCA‐3B in southern Florida, based on their divergence in water management and flow regimes over the past 50 years. Methods In 562 quadrats, we estimated species coverages and quantified maximum, minimum and average water depth, soil depth to bedrock, normalized difference vegetation index (NDVI) and proximity to the nearest tree island. We used non‐metric multi‐dimensional scaling (NMS) to relate compositional variation to local and landscape‐level factors, and evaluated environmental differences among eight a priori vegetation types via anova . Results Water depth and hydroperiod decreased from sloughs to ridges to tree islands, but regions also differed significantly in the abundance of several community types and the hydroregimes characterizing them. NMS revealed two significant axes of compositional variation, tied to local gradients of water depth and correlated factors, and to a landscape‐scale gradient of proximity to tall tree islands. Sawgrass height and soil thickness increased toward higher ridges, and NDVI was greatest on tree islands. Main conclusions This study supports four components of our model: positive feedback of local substrate height on itself, woody plant invasion and subsequent P transport and concentration by top predators nesting on taller tree islands, compositional shifts in sites close to tree islands due to nutrient leakage, and flow‐induced feedback against total raised area. Regional divergence in the relationship of community types to current hydroregimes appears to reflect a lag of a few years after shifts in water management; a longer lag would be expected for shifts in landscape patterning. Both local and landscape‐level drivers appear to shape vegetation composition and soil thickness in the central Everglades. 相似文献
Sea urchin embryos and larvae represent suitable model systems on where to investigate the effects of heavy metals on development and cell viability. Here, we tested the toxic effects of low (10−12 M), medium (10−9 M), and high (10−6 M) cadmium chloride concentrations, mimicking unpolluted, moderately and highly polluted seawaters, respectively, on Paracentrotus lividus sea urchins offspring. Larvae were continuously treated from fertilization and inspected at time intervals comprised between 10 and 30 days of development. Delays and/or morphological abnormalities were firstly evident in larvae treated for 15 days with high cadmium (10−6 M) and for 25 days with medium cadmium (10−9 M). Major defects consisted in the reduction and lack of arms and skeleton elongation. No obvious differences with respect to controls were observed in embryos/larvae exposed to low cadmium (10−12 M), even after 30 days of exposure. Using in situ terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay (TUNEL) assay on larvae whole mounts, we detected apoptosis after 10 days of treatment with 10−6 and 10−9 M CdCl2, when no morphological abnormalities were recognizable yet. Supernumerary apoptotic cells were found in arm buds, ciliary bands, and apex. In conclusion, echinoderm embryos and larvae represent candidates of choice for the study of stress and defense mechanisms activated by cadmium exposure. 相似文献
Myosin V is an actin-based motor essential for a variety of cellular processes including skin pigmentation, cell separation and synaptic transmission. Myosin V transports organelles, vesicles and mRNA by binding, directly or indirectly, to cargo-bound receptors via its C-terminal globular tail domain (GTD). We have used the budding yeast myosin V Myo2p to shed light on the mechanism of how Myo2p interacts with post-Golgi carriers. We show that the Rab/Ypt protein Ypt32p, which associates with membranes of the trans -Golgi network, secretory vesicles and endosomes and is related to the mammalian Rab11, interacts with the Myo2p GTD within a region previously identified as the 'vesicle binding region'. Furthermore, we show that the essential myosin light chain 1 (Mlc1p), required for vesicle delivery at the mother-bud neck during cytokinesis, binds to the Myo2p GTD in a region overlapping that of Ypt32p. Our data are consistent with a role of Ypt32p and Mlc1p in regulating the interaction of post-Golgi carriers with Myo2p subdomain II. 相似文献