首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   814篇
  免费   81篇
  国内免费   17篇
  2022年   9篇
  2021年   19篇
  2020年   13篇
  2019年   13篇
  2018年   13篇
  2017年   11篇
  2016年   18篇
  2015年   24篇
  2014年   32篇
  2013年   31篇
  2012年   38篇
  2011年   36篇
  2010年   34篇
  2009年   31篇
  2008年   38篇
  2007年   39篇
  2006年   30篇
  2005年   36篇
  2004年   17篇
  2003年   41篇
  2002年   23篇
  2001年   19篇
  2000年   30篇
  1999年   17篇
  1998年   22篇
  1997年   16篇
  1996年   11篇
  1993年   13篇
  1992年   18篇
  1991年   10篇
  1990年   6篇
  1989年   10篇
  1988年   7篇
  1987年   8篇
  1986年   8篇
  1985年   7篇
  1984年   13篇
  1983年   6篇
  1982年   7篇
  1979年   5篇
  1978年   5篇
  1976年   6篇
  1975年   6篇
  1974年   10篇
  1973年   9篇
  1971年   6篇
  1968年   10篇
  1967年   10篇
  1966年   8篇
  1965年   6篇
排序方式: 共有912条查询结果,搜索用时 31 毫秒
31.
32.
Explanations for major biodiversity patterns have not achieved a consensus, even for the latitudinal diversity gradient (LDG), but most relate to patterns of solar energy influx into Earth systems, and its effects on temperature (as biochemical activity rates are temperature sensitive) and photosynthesis (which drives nearly all of the productivity that fuels ecosystems). Marine systems break some of the confounding correlations among temperature, latitude and biodiversity that typify the terrestrial systems that have dominated theoretical discussions and large‐scale analyses. High marine diversities occur not only in warm shallow seas where productivity may be either low or high, depending on regional features, but also in very cold deep‐sea regions, indicating that diversity is promoted by stability in temperature and in trophic resources (nutrients and food items), and more specifically by their interaction, rather than by high mean values of either variable. The common association of high diversity with stable but low to moderate annual productivity suggests that ecological specialization underlies the similarly high diversities in the shallow tropics and deep sea. Recent work on shallow‐marine bivalves is consistent with this view of decreasing specialization in less stable habitats. Lower diversities in shallow seas are associated with either high thermal seasonality (chiefly in temperate latitudes) or highly seasonal trophic supplies (at any latitude), which exclude species that are adapted to narrow ranges of those variables.  相似文献   
33.
Pavlovian conditioning was studied in male Fischer 344 rats using tones as the conditioned stimulus (CS) and footshock as the unconditioned stimulus (UCS). Different groups of animals received (a) contiguous CS-UCS pairings with a 0.5 sec CS, (b) contiguous CS-UCS pairings with a 4.0 sec CS, or (c) a random sequence of noncontiguous tones and shocks using either a 0.5 sec or a 4.0 sec CS. Heart rate (HR) and leg flexion (LF) responses were recorded. Leg flexion conditioning occurred only in the 0.5 sec contiguous group. Decelerative HR CRs occurred only in the 4.0 sec contiguous group. Accelerative HR changes occurred in the other two groups but were significantly greater in the 0.5 sec contiguous group. These results are similar to but not identical to those obtained during eyeblink or nictitating membrane conditioning in rabbits, and suggest that the topography of the Pavlovian HR CR is dependent on the simultaneous occurrence of other classically conditioned responses.  相似文献   
34.
Alginate is an important polysaccharide that is commonly used as a gelling agent in foods, cosmetics and healthcare products. Currently, all alginate used commercially is extracted from brown seaweed. However, with environmental changes such as increasing ocean temperature and the increasing number of biotechnological uses of alginates with specific properties, there is an emerging need for more reliable and customizable sources of alginate. An alternative to seaweed for alginate production is Pseudomonas aeruginosa, a common Gram-negative bacterium that can form alginate-containing biofilms. However, P. aeruginosa is an opportunistic pathogen that can cause life-threatening infections in immunocompromised patients. Therefore, we sought to engineer a non-pathogenic P. aeruginosa strain that is safe for commercial production of alginate. Using a homologous recombination strategy, we sequentially deleted five key pathogenicity genes from the P. aeruginosa chromosome, resulting in the marker-free strain PGN5. Intraperitoneal injection of mice with PGN5 resulted in 0% mortality, while injection with wild-type P. aeruginosa resulted in 95% mortality, providing evidence that the systemic virulence of PGN5 is highly attenuated. Importantly, PGN5 produces large amounts of alginate in response to overexpression of MucE, an activator of alginate biosynthesis. The alginate produced by PGN5 is structurally identical to alginate produced by wild-type P. aeruginosa, indicating that the alginate biosynthetic pathway remains functional in this modified strain. The genetic versatility of P. aeruginosa will allow us to further engineer PGN5 to produce alginates with specific chemical compositions and physical properties to meet different industrial and biomedical needs.  相似文献   
35.
36.
37.
This study combined morphological and morphometric information on egg clutches, egg capsules and paralarvae of two sympatric coastal octopuses from New Zealand waters, Octopus huttoni and Pinnoctopus cordiformis, to provide species-specific traits to identify their early life stages obtained from field surveys. Eggs of O. huttoni (2.5 mm length; 1 mm width) were entwined with one another forming strings that ranged from 11 to 25.8 mm in length. Eggs of P. cordiformis (6.4 mm length; 1.5 mm width) were significantly bigger than those of O. huttoni and were grouped in small clusters of about seven eggs. Paralarvae O. huttoni and P. cordiformis differed in hatching size (1.4 mm versus 3.1 mm mantle length), number of suckers per arm (four versus eight), number of lamellae per outer demibranch (five versus ten) and arrangements of chromatophores in the body surface (29 to 59 versus 91 to 179), respectively. The morphological traits described in hatchlings from the laboratory allowed comparisons with field-collected paralarvae, suggesting that such characters were reliable species-specific patterns to enable a consistent differentiation between the early life stages of these two sympatric species, even in the absence of the brooding female.  相似文献   
38.
As part of the SERPENT Project, five observations of apparently healthy oarfish Regalecus glesne by remotely operated vehicles are reported from the northern Gulf of Mexico. Regalecus glesne were observed between 2008 and 2011 at depths from within the epipelagic and mesopelagic zones. These observations include the deepest verified record of R. glesne (463–492 m) and the first record of an arthropod ectoparasite (isopod).  相似文献   
39.
The chicken major histocompatibility complex (MHC) is located on the microchromosome 16 and is described as the most variable region in the genome. The genes of the MHC play a central role in the immune system. Particularly, genes encoding proteins involved in the antigen presentation to T cells. Therefore, describing the genetic polymorphism of this region is crucial in understanding host–pathogen interactions. The tandem repeat LEI0258 is located within the core area of the B region of the chicken MHC (MHC-B region) and its genotypes correlate with serology. This marker was used to provide a picture of the worldwide diversity of the chicken MHC-B region and to categorize chicken MHC haplotypes. More than 1,600 animals from 80 different populations or lines of chickens from Africa, Asia, and Europe, including wild fowl species, were genotyped at the LEI0258 locus. Fifty novel alleles were described after sequencing. The resulting 79 alleles were classified into 12 clusters, based on the SNPs and indels found within the sequences flanking the repeats. Furthermore, hypotheses were formulated on the evolutionary dynamics of the region. This study constitutes the largest variability report for the chicken MHC and establishes a framework for future diversity or association studies.  相似文献   
40.
Methanogenesis, the microbial methane (CH4) production, is traditionally thought to anchor the mineralization of organic matter as the ultimate respiratory process in deep sediments, despite the presence of oxidized mineral phases, such as iron oxides. This process is carried out by archaea that have also been shown to be capable of reducing iron in high levels of electron donors such as hydrogen. The current pure culture study demonstrates that methanogenic archaea (Methanosarcina barkeri) rapidly switch from methanogenesis to iron‐oxide reduction close to natural conditions, with nitrogen atmosphere, even when faced with substrate limitations. Intensive, biotic iron reduction was observed following the addition of poorly crystalline ferrihydrite and complex organic matter and was accompanied by inhibition of methane production. The reaction rate of this process was of the first order and was dependent only on the initial iron concentrations. Ferrous iron production did not accelerate significantly with the addition of 9,10‐anthraquinone‐2,6‐disulfonate (AQDS) but increased by 11–28% with the addition of phenazine‐1‐carboxylate (PCA), suggesting the possible role of methanophenazines in the electron transport. The coupling between ferrous iron and methane production has important global implications. The rapid transition from methanogenesis to reduction of iron–oxides close to the natural conditions in sediments may help to explain the globally‐distributed phenomena of increasing ferrous concentrations below the traditional iron reduction zone in the deep ‘methanogenic’ sediment horizon, with implications for metabolic networking in these subsurface ecosystems and in past geological settings.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号