首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3364篇
  免费   252篇
  3616篇
  2024年   4篇
  2023年   20篇
  2022年   48篇
  2021年   106篇
  2020年   56篇
  2019年   88篇
  2018年   115篇
  2017年   96篇
  2016年   131篇
  2015年   187篇
  2014年   252篇
  2013年   262篇
  2012年   354篇
  2011年   314篇
  2010年   189篇
  2009年   154篇
  2008年   171篇
  2007年   183篇
  2006年   150篇
  2005年   146篇
  2004年   124篇
  2003年   100篇
  2002年   85篇
  2001年   24篇
  2000年   32篇
  1999年   32篇
  1998年   16篇
  1997年   17篇
  1996年   11篇
  1995年   5篇
  1994年   13篇
  1993年   15篇
  1992年   12篇
  1991年   15篇
  1990年   9篇
  1989年   7篇
  1988年   4篇
  1987年   7篇
  1984年   3篇
  1983年   4篇
  1982年   8篇
  1981年   3篇
  1980年   4篇
  1979年   5篇
  1977年   5篇
  1974年   3篇
  1968年   5篇
  1967年   5篇
  1966年   4篇
  1965年   2篇
排序方式: 共有3616条查询结果,搜索用时 31 毫秒
41.
The aim of radiotherapy is to eradicate cancer cells with ionizing radiation; tumor cell death following irradiation can be induced by several signaling pathways, most of which are triggered as a consequence of DNA damage, the primary and major relevant cell response to radiation. Several lines of evidence demonstrated that ceramide, a crucial sensor and/or effector of different signalling pathways promoting cell cycle arrest, death and differentiation, is directly involved in the molecular mechanisms underlying cellular response to irradiation. Most of the studies strongly support a direct relationship between ceramide accumulation and radiation-induced cell death, mainly apoptosis; for this reason, defining the contribution of the multiple metabolic pathways leading to ceramide formation and the causes of its dysregulated metabolism represent the main goal in order to elucidate the ceramide-mediated signaling in radiotherapy. In this review, we summarize the current knowledge concerning the different routes leading to ceramide accumulation in radiation-induced cell response with particular regard to the role of the enzymes involved in both ceramide neogenesis and catabolism. Emphasis is placed on sphingolipid breakdown as mechanism of ceramide generation activated following cell irradiation; the functional relevance of this pathway, and the role of glycosphingolipid glycohydrolases as direct targets of ionizing radiation are also discussed. These new findings add a further attractive point of investigation to better define the complex interplay between sphingolipid metabolism and radiation therapy.  相似文献   
42.
The Gulf of Cariaco is a marine ecosystem with high primary productivity, which gives it an ecological and socioeconomic importance. Nevertheless, anthropogenic activities around the Gulf produce wastes that are deposited directly or by runoff into the sediments, and consequently, increases concentrations of metals in this ecosystem. The objective of this study was to determine the distribution of cadmium, copper, lead, manganese, nickel and zinc in geochemical fractions of surface sediments, using modified BCR sequential extraction procedure. The concentrations were measured using flame atomic absorption spectroscopy. In addition, the contents of soluble and exchangeable metals associated to carbonate fractions, determined by BCR, were compared with those determined by the method of Campanella. Samples were collected in 12 stations during June 2007. The applied methodologies were evaluated with a certified reference material of marine sediments (HISS-1) and the results indicated that these methods provide adequate accuracy and precision for the extraction of metals. The total metal concentrations (microg g(-1)) were, Cd: < limit of detection (LD)-5.0; Pb: 1.79-60.41; Cu: no detected (ND)-42.18; Zn: 25.13-104.57; Mn: 66.31-80.29 and Ni: 3.29-24.58. Cd, Cu, Ni and Pb at several stations, exceeded the Canadian Sediment Quality Guidelines of the Lowest Effect Levels (LEL). Cadmium was identified as being the most mobile of the elements, having the highest concentrations in soluble and exchangeable cations and carbonates. However, Pb, Cu, Mn and Zn levels were found highly associated to organic matter and sulfide fractions. The methods did not show significant statistical differences for the extraction of soluble and exchangeable cations and the metals associated to carbonate fraction. There are several significant correlations between heavy metals, which suggest their common origin.  相似文献   
43.
44.
Because of the carcinogenicity of SV40 in rodents, and its possible distribution through the polio vaccine, many studies have been conducted to determine if there is an association between SV40 genomic infection and different types of cancer; sometimes, these studies included data on the prevalence of genomic infection in healthy subjects as secondary information. We reviewed all the studies that reported the prevalence of SV40 genomic infection in healthy subjects, tested by PCR based methods. The 20 articles considered here included 1103 samples from healthy subjects, with a prevalence of infection ranging from 0 to 25.6%, with high heterogeneity, and no association with the type of sample analyzed (Mantel-Haenszel OR: 0.74; 95% CI: 0.44-1.23). The wide variation in frequency pose problems in terms of study design; in fact, the representativeness of the samples used as controls in the published studies may be very limited. Larger studies on healthy subjects, tested for SV40 genomic infection at various genomic regions, conducted in different geographic areas, are needed.  相似文献   
45.
46.
The existence of neuron-specific endocytic protein isoforms raises questions about their importance for specialized neuronal functions. Dynamin, a GTPase implicated in the fission reaction of endocytosis, is encoded by three genes, two of which, dynamin 1 and 3, are highly expressed in neurons. We show that dynamin 3, thought to play a predominantly postsynaptic role, has a major presynaptic function. Although lack of dynamin 3 does not produce an overt phenotype in mice, it worsens the dynamin 1 KO phenotype, leading to perinatal lethality and a more severe defect in activity-dependent synaptic vesicle endocytosis. Thus, dynamin 1 and 3, which together account for the overwhelming majority of brain dynamin, cooperate in supporting optimal rates of synaptic vesicle endocytosis. Persistence of synaptic transmission in their absence indicates that if dynamin plays essential functions in neurons, such functions can be achieved by the very low levels of dynamin 2.  相似文献   
47.
48.
Plasmodium falciparum parasites express and traffick numerous proteins into the red blood cell (RBC), where some associate specifically with the membrane skeleton. Importantly, these interactions underlie the major alterations to the modified structural and functional properties of the parasite-infected RBC. P. falciparum Erythrocyte Membrane Protein 3 (PfEMP3) is one such parasite protein that is found in association with the membrane skeleton. Using recombinant PfEMP3 proteins in vitro, we have identified the region of PfEMP3 that binds to the RBC membrane skeleton, specifically to spectrin and actin. Kinetic studies revealed that residues 38-97 of PfEMP3 bound to purified spectrin with moderately high affinity (K(D(kin))=8.5 x 10(-8) M). Subsequent deletion mapping analysis further defined the binding domain to a 14-residue sequence (IFEIRLKRSLAQVL; K(D(kin))=3.8 x 10(-7) M). Interestingly, this same domain also bound to F-actin in a specific and saturable manner. These interactions are of physiological relevance as evidenced by the binding of this region to the membrane skeleton of inside-out RBCs and when introduced into resealed RBCs. Identification of a 14-residue region of PfEMP3 that binds to both spectrin and actin provides insight into the potential function of PfEMP3 in P. falciparum-infected RBCs.  相似文献   
49.
50.
The effect of pyridoxal 5-phosphate and some other lysine reagents on the purified,reconstituted mitochondrial oxoglutarate transport protein has been investigated. The inhibition ofoxoglutarate/oxoglutarate exchange by pyridoxal 5-phosphate can be reversed by passing theproteoliposomes through a Sephadex column but the reduction of the Schiff's base by sodiumborohydride yielded an irreversible inactivation of the oxoglutarate carrier protein. Pyridoxal5-phosphate, which caused a time- and concentration-dependent inactivation of oxoglutaratetransport with an IC50 of 0.5 mM, competed with the substrate for binding to the oxoglutaratecarrier (K i = 0.4 mM). Kinetic analysis of oxoglutarate transport inhibition by pyridoxal5-phosphate indicated that modification of a single amino acid residue/carrier molecule wassufficient for complete inhibition of oxoglutarate transport. After reduction with sodiumborohydride [3H]pyridoxal 5-phosphate bound covalently to the oxoglutarate carrier. Incubation ofthe proteoliposomes with oxoglutarate or L-malate protected the carrier against inactivationand no radioactivity was found associated with the carrier protein. In contrast, glutarate andsubstrates of other mitochondrial carrier proteins were unable to protect the carrier. Mersalyl,which is a known sulfhydryl reagent, also failed to protect the oxoglutarate carrier againstinhibition by pyridoxal 5-phosphate. These results indicate that pyridoxal 5-phosphateinteracts with the oxoglutarate carrier at a site(s) (i.e., a lysine residue(s) and/or the amino-terminalglycine residue) which is essential for substrate translocation and may be localized at or nearthe substrate-binding site.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号