首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1243篇
  免费   112篇
  1355篇
  2023年   8篇
  2022年   20篇
  2021年   40篇
  2020年   16篇
  2019年   22篇
  2018年   38篇
  2017年   22篇
  2016年   49篇
  2015年   54篇
  2014年   73篇
  2013年   68篇
  2012年   82篇
  2011年   95篇
  2010年   36篇
  2009年   32篇
  2008年   56篇
  2007年   61篇
  2006年   60篇
  2005年   49篇
  2004年   59篇
  2003年   45篇
  2002年   47篇
  2001年   18篇
  2000年   27篇
  1999年   19篇
  1998年   8篇
  1997年   11篇
  1996年   15篇
  1995年   11篇
  1994年   15篇
  1993年   12篇
  1992年   24篇
  1991年   8篇
  1990年   14篇
  1989年   13篇
  1988年   13篇
  1987年   7篇
  1986年   8篇
  1985年   5篇
  1984年   12篇
  1983年   4篇
  1982年   5篇
  1979年   6篇
  1978年   4篇
  1975年   6篇
  1974年   4篇
  1973年   6篇
  1970年   4篇
  1966年   4篇
  1927年   4篇
排序方式: 共有1355条查询结果,搜索用时 13 毫秒
21.
By immunohistochemistry, we demonstrated the localization of the Na(+)-D-glucose cotransporter SGLT1 in capillaries of rat heart and skeletal muscle, but not in capillaries of small intestine and submandibular gland. mRNA of SGLT1 was identified in skeletal muscle and primary cultured coronary endothelial cells. The functional relevance of SGLT1 for glucose transport across capillary walls in muscle was tested by measuring the extraction of D-glucose from the perfusate during non-recirculating perfusion of isolated rat hindlimbs. In this model, D-glucose extraction from the perfusate is increased by insulin which accelerates D-glucose uptake into myocytes by increasing the concentration of glucose transporter GLUT4 in the plasma membrane. The insulin-induced increase of D-glucose extraction from the perfusate was abolished after blocking SGLT1 with the specific inhibitor phlorizin. The data show that SGLT1 in capillaries of skeletal muscle is required for the action of insulin on D-glucose supply of myocytes.  相似文献   
22.
The association between polymorphism at the mc1r locus and colour variation was studied in two wall lizard species (Podarcis lilfordi and P. pityusensis) from the Balearic archipelago. Podarcis lilfordi comprises several deep mitochondrial lineages, the oldest of which originated in the Pliocene, while much shallower mitochondrial lineages are found in P. pityusensis. Here, we examined whether specific substitutions were associated with the melanic colouration found in islet populations of these species. Homologous nuclear sequences covering most of the mc1r gene were obtained from 73 individuals from melanic and non-melanic Podarcis from different populations (the entire gene was also sequenced in six selected individuals). MtDNA gene trees were also constructed and used as a framework to assess mc1r diversity. Mc1r showed greater polymorphism in P. lilfordi than in P. pityusensis. However, we observed no substitutions that were common to all melanic individuals across the two species. Only one significant association was detected in the mc1r partial sequence, but this was a synonymous A/G mutation with A alleles being more abundant in melanic populations. In addition, there were no associations between the main dominant phenotypes (green and brown, blue and yellow spots and ventral colour) and synonymous or non-synonymous substitutions in the mc1r gene. There was no statistical evidence of selection on mc1r. This study suggests no relationship between mc1r polymorphism and colour variation in Balearic Podarcis.  相似文献   
23.
Accurate estimates of stress in an atherosclerotic lesion require knowledge of the material properties of its components (e.g., normal wall, fibrous plaque, calcified regions, lipid pools) that can only be approximated. This leads to considerable uncertainty in these computational predictions. A study was conducted to test the sensitivity of predicted levels of stress and strain to the parameter values of plaque used in finite element analysis. Results show that the stresses within the arterial wall, fibrous plaque, calcified plaque, and lipid pool have low sensitivities for variation in the elastic modulus. Even a +/- 50% variation in elastic modulus leads to less than a 10% change in stress at the site of rupture. Sensitivity to variations in elastic modulus is comparable between isotropic nonlinear, isotropic nonlinear with residual strains, and transversely isotropic linear models. Therefore, stress analysis may be used with confidence that uncertainty in the material properties generates relatively small errors in the prediction of wall stresses. Either isotropic nonlinear or anisotropic linear models provide useful estimates, however the predictions in regions of stress concentration (e.g., the site of rupture) are somewhat more sensitive to the specific model used, increasing by up to 30% from the isotropic nonlinear to orthotropic model in the present example. Changes resulting from the introduction of residual stresses are much smaller.  相似文献   
24.
There are few major morphologies of cell death that have been described so far: apoptosis (type I), cell death associated with autophagy (type II), necrosis (type III) and anchorage‐dependent mechanisms—anoikis. Here, we show for the first time a possibly novel mechanism inducing tumour cell death under in vitro conditions—enucleation. We pursued the influence of colloidal suspensions of Fe3O4 nanoparticles on tumour cell lines (SK‐BR‐3 and MCF‐7 breast cancer cell lines) grown according to standard cell culture protocols. Magnetite nanoparticles were prepared by combustion synthesis and double layer coated with oleic acid. Scanning and transmission electron microscopy revealed that tumour cells developed a network of intracytoplasmic stress fibres, which induce extrusion of nuclei, and enucleated cells die. Normal adult mesenchymal stem cells, used as control, did not exhibit the same behaviour. Intact nuclei were found in culture supernatant of tumour cells, and were visualized by immunofluorescence. Enucleation as a potential mechanism of tumour cell death might open new horizons in cancer biology research and development of therapeutic agents capable of exploiting this behaviour.  相似文献   
25.
Ciliary beat frequency is primarily regulated by outer arm dyneins (22 S dynein). Chilcote and Johnson (Chilcote, T. J., and Johnson, K. A. (1990) J. Biol. Chem. 256, 17257-17266) previously studied isolated Tetrahymena 22 S dynein, identifying a protein p34, which showed cAMP-dependent phosphorylation. Here, we characterize the molecular biochemistry of p34 further, demonstrating that it is the functional ortholog of the 22 S dynein regulatory light chain, p29, in Paramecium. p34, thiophosphorylated in isolated axonemes in the presence of cAMP, co-purified with 22 S dynein and not with inner arm dynein (14 S dynein). Isolated 22 S dynein containing phosphorylated p34 showed approximately 70% increase in in vitro microtubule translocation velocity compared with its unphosphorylated counterpart. Extracted p34 rebound to isolated 22 S dynein from either Tetrahymena or Paramecium but not to 14 S dynein from either ciliate. Binding of radiolabeled p34 to 22 S dynein was competitive with p29. Phosphorylated p34 was not present in axonemes isolated from a mutant lacking outer arms. Two-dimensional gel electrophoresis followed by phosphorimaging revealed at least five phosphorylated p34-related spots, consistent with multiple phosphorylation sites in p34 or perhaps multiple isoforms of p34. These new features suggest that a class of outer arm dynein light chains including p34 regulates microtubule sliding velocity and consequently ciliary beat frequency through phosphorylation.  相似文献   
26.
Polyhydroxyalkanoates (PHAs) comprise a class of biodegradable polymers which offer an environmentally sustainable alternative to petroleum-based plastics. Production of PHAs in plants is attractive since current fermentation technology is prohibitively expensive. The PHA homopolymer poly(β-hydroxybutyrate) (PHB) has previously been produced in leaves of Arabidopsis thaliana (Nawrath et al., 1994, Proc Natl Acad Sci USA 91: 12760–12764). However, Brassica napus oilseed may provide a better system for PHB production because acetyl-CoA, the substrate required in the first step of PHB biosynthesis, is prevalent during fatty acid biosynthesis. Three enzymatic activities are needed to synthesize PHB: a β-ketothiolase, an acetoacetyl-CoA reductase and a PHB synthase. Genes from the bacterium Ralstonia eutropha encoding these enzymes were independently engineered behind the seed-specific Lesquerella fendleri oleate 12-hydroxylase promoter in a modular fashion. The gene cassettes were sequentially transferred into a single, multi-gene vector which was used to transform B. napus. Poly(β-hydroxybutyrate) accumulated in leukoplasts to levels as high as 7.7% fresh seed weight of mature seeds. Electron-microscopy analyses indicated that leukoplasts from these plants were distorted, yet intact, and appeared to expand in response to polymer accumulation. Received: 26 May 1999 / Accepted: 16 June 1999  相似文献   
27.
28.
We recently identified meclizine, an over-the-counter drug, as an inhibitor of mitochondrial respiration. Curiously, meclizine blunted respiration in intact cells but not in isolated mitochondria, suggesting an unorthodox mechanism. Using a metabolic profiling approach, we now show that treatment with meclizine leads to a sharp elevation of cellular phosphoethanolamine, an intermediate in the ethanolamine branch of the Kennedy pathway of phosphatidylethanolamine biosynthesis. Metabolic labeling and in vitro enzyme assays confirmed direct inhibition of the cytosolic enzyme CTP:phosphoethanolamine cytidylyltransferase (PCYT2). Inhibition of PCYT2 by meclizine led to rapid accumulation of its substrate, phosphoethanolamine, which is itself an inhibitor of mitochondrial respiration. Our work identifies the first pharmacologic inhibitor of the Kennedy pathway, demonstrates that its biosynthetic intermediate is an endogenous inhibitor of respiration, and provides key mechanistic insights that may facilitate repurposing meclizine for disorders of energy metabolism.  相似文献   
29.
NOD2 is one of the best characterized members of the cytosolic NOD-like receptor family. NOD2 is able to sense muramyl dipeptide, a specific bacterial cell wall component, and to subsequently induce various signaling pathways leading to NF-κB activation and autophagy, both events contributing to an efficient innate and adaptive immune response. Interestingly, loss-of-function NOD2 variants were associated with a higher susceptibility for Crohn disease, which highlights the physiological importance of proper regulation of NOD2 activity. We performed a biochemical screen to search for new NOD2 regulators. We identified a new NOD2 partner, c-Jun N-terminal kinase-binding protein 1 (JNKBP1), a scaffold protein characterized by an N-terminal WD-40 domain. JNKBP1, through its WD-40 domain, binds to NOD2 following muramyl dipeptide activation. This interaction attenuates NOD2-mediated NF-κB activation and IL-8 secretion as well as NOD2 antibacterial activity. JNKBP1 exerts its repressor effect by disturbing NOD2 oligomerization and RIP2 tyrosine phosphorylation, both steps required for downstream NOD2 signaling. We furthermore showed that JNKBP1 and NOD2 are co-expressed in the human intestinal epithelium and in immune cells recruited in the lamina propria, which suggests that JNKBP1 contributes to maintain NOD2-mediated intestinal immune homeostasis.  相似文献   
30.
Repetitive low frequency stimulation results in potentiation of twitch force development in fast-twitch skeletal muscle due to myosin regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent skeletal muscle myosin light chain kinase (skMLCK). We generated transgenic mice that express an skMLCK CaM biosensor in skeletal muscle to determine whether skMLCK or CaM is limiting to twitch force potentiation. Three transgenic mouse lines exhibited up to 22-fold increases in skMLCK protein expression in fast-twitch extensor digitorum longus muscle containing type IIa and IIb fibers, with comparable expressions in slow-twitch soleus muscle containing type I and IIa fibers. The high expressing lines showed a more rapid RLC phosphorylation and force potentiation in extensor digitorum longus muscle with low frequency electrical stimulation. Surprisingly, overexpression of skMLCK in soleus muscle did not recapitulate the fast-twitch potentiation response despite marked enhancement of both fast-twitch and slow-twitch RLC phosphorylation. Analysis of calmodulin binding to the biosensor showed a frequency-dependent activation to a maximal extent of 60%. Because skMLCK transgene expression is 22-fold greater than the wild-type kinase, skMLCK rather than calmodulin is normally limiting for RLC phosphorylation and twitch force potentiation. The kinase activation rate (10.6 s(-1)) was only 3.6-fold slower than the contraction rate, whereas the inactivation rate (2.8 s(-1)) was 12-fold slower than relaxation. The slower rate of kinase inactivation in vivo with repetitive contractions provides a biochemical memory via RLC phosphorylation. Importantly, RLC phosphorylation plays a prominent role in skeletal muscle force potentiation of fast-twitch type IIb but not type I or IIa fibers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号