首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   20篇
  2021年   4篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2014年   5篇
  2013年   9篇
  2012年   10篇
  2011年   4篇
  2010年   3篇
  2009年   6篇
  2007年   5篇
  2006年   7篇
  2005年   4篇
  2004年   8篇
  2003年   7篇
  2002年   4篇
  2001年   6篇
  2000年   5篇
  1998年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   4篇
  1986年   2篇
  1985年   6篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   5篇
  1975年   3篇
  1974年   5篇
  1973年   7篇
  1972年   3篇
  1971年   3篇
  1970年   1篇
  1969年   4篇
  1968年   2篇
  1967年   1篇
  1966年   5篇
  1965年   4篇
  1964年   4篇
  1963年   1篇
排序方式: 共有202条查询结果,搜索用时 31 毫秒
51.
A fungus capable of degrading DL-phenylalanine was isolated from the soil and identified as Aspergillus niger. It was found to metabolize DL-phenylalanine by a new pathway involving 4-hydroxymandelic acid. D-Amino acid oxidase and L-phenylalanine: 2-oxoglutaric acid aminotransferase initiated the degradation of D- and L-phenylalanine, respectively. Both phenylpyruvate oxidase and phenylpyruvate decarboxylase activities could be demonstrated in the cell-free system. Phenylacetate hydroxylase, which required reduced nicotinamide adenine dinucleotide phosphate, converted phenylacetic acid to 2- and 4-hydroxyphenylacetic acid. Although 4-hydroxyphenylacetate was converted to 4-hydroxymandelate, 2-hydroxyphenylacetate was not utilized until the onset of sporulation. During sporulation, it was converted rapidly into homogentisate and oxidized to ring-cleaved products. 4-Hydroxymandelate was degraded to protocatechuate via 4-hydroxybenzoylformate, 4-hydroxybenzaldehyde, and 4-hydroxybenzoate.  相似文献   
52.
O(6)-Benzylguanine derivatives with suitable radionuclides attached to the benzyl ring are potentially useful in the noninvasive imaging of the DNA repair protein, alkylguanine-DNA alkyltransferase (AGT). Previously, O(6)-3-[(131)I]iodobenzylguanine ([(131)I]IBG) was prepared using a two-step approach; we now report its synthesis in a single step by the radioiododestannylation of O(6)-3-(trimethylstannyl)benzylguanine in 85-95% radiochemical yield. The in vitro specific uptake of [(131)I]IBG in DAOY human medulloblastoma cells, in TE-671 human rhabdomyosarcoma cells and a CHO cell line transfected to express AGT was linear (r(2) = 0.9-1.0) as a function of cell density. After intravenous injection of [(131)I]IBG in athymic mice bearing TE-671 xenografts, tumor uptake was 1.38 +/- 0.34% ID/g at 0.5 h and declined at 2 and 4 h. Preadministration of O(6)-(3-iodobenzyl)guanine (IBG) at 0.5 h increased uptake not only in tumor but also in several normal tissues. Notable exceptions were thyroid (p < 0.05), lung (p <0.05) and stomach. After intratumoral injection of [(131)I]IBG in the same xenograft model, the uptake in tumors that were depleted of AGT by BG treatment (165.8 +/- 27.5% ID/g) was about 60% of that in control mice (272.4 +/- 48.2% ID/g; p < 0.05).  相似文献   
53.
Carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) utilizes a unique Ni-M bimetallic site in the biosynthesis of acetyl-CoA, where a square-planar Ni ion is coordinated to two thiolates and two deprotonated amides in a Cys-Gly-Cys motif. The identity of M is currently a matter of debate, although both Cu and Ni have been proposed. In an effort to model ACSs unusual active site and to provide insight into the mechanism of acetyl-CoA formation and the role of each of the metals ions, we have prepared and structurally characterized a number of Ni(II)–peptide mimic complexes. The mononuclear complexes Ni(II) N,N-bis(2-mercaptoethyl)oxamide (1), Ni(II) N,N-ethylenebis(2-mercaptoacetamide) (2), and Ni(II) N,N-ethylenebis(2-mercaptopropionamide) (3) model the Ni(Cys-Gly-Cys) site and can be used as synthons for additional multinuclear complexes. Reaction of 2 with MeI resulted in the alkylation of the sulfur atoms and the formation of Ni(II) N,N-ethylenebis(2-methylmercaptoacetamide) (4), demonstrating the nucleophilicity of the terminal alkyl thiolates. Addition of Ni(OAc)2·4H2O to 3 resulted in the formation of a trinuclear species 5, while 2 crystallizes as an unusual paddlewheel complex (6) in the presence of nickel acetate. The difference in reactivity between the similar complexes 2 and 3 highlights the importance of ligand design when synthesizing models of ACS. Significantly, 5 maintains the key features observed in the active site of ACS, namely a square-planar Ni coordinated to two deprotonated amides and two thiolates, where the thiolates bridge to a second metal, suggesting that 5 is a reasonable structural model for this unique enzyme.Ø. Hatlevik and M.C. Blanksma contributed equally to this work  相似文献   
54.
The development of O(6)-(3-[(125)I]iodobenzyl)-2'-deoxyguanosine ([(125)I]IBdG), the glycosylated analogue of the O(6)-3-iodobenzylguanine (IBG), as an agent for the in vivo mapping of the DNA repair protein alkylguanine-DNA alkyltransferase (AGT) is described. Synthesis of its tin precursor, O(6)-3-trimethylstannylbenzyl-2'-deoxyguanosine (TBdG) was achieved in four steps from deoxyguanosine. Radioiodination of TBdG in a single step gave [(125)I]IBdG in 70-85% isolated radiochemical yield. [(125)I]IBdG bound specifically to pure AGT with an IC(50) of 7.1 microM. From paired-label assays, [(125)I]IBdG showed a 2- to 3-fold higher cellular uptake than [(131)I]IBG in DAOY medulloblastoma, TE-671 rhabdomyosarcoma, SK-Mel-28 melanoma, and HT-29 colon carcinoma human cell lines. Uptake of both labeled compounds in these cell lines decreased with increasing concentrations of unlabeled O(6)-benzylguanine (BG) when BG was present in the medium during incubation with the labeled compounds. Compared to BG, unlabeled IBdG diminished the uptake of [(125)I]IBdG and [(131)I]IBG in DAOY cells more efficiently (IC(50)<1 microM vs >10 microM for BG). There was no significant change in cell-bound activity of [(125)I]IBdG and [(131)I]IBG when BG was removed from the incubation medium before incubating cells with the tracers, suggesting that only a very small portion of radioactivity taken up by the cells is AGT bound. This was corroborated by gel-electrophoresis performed on extracts from cells treated with varying amounts of BG and then incubated with [(125)I]IBdG in the presence of BG. No radiolabeled AGT band was discernable by phosphor-imaging, signifying low cellular AGT binding of the radiotracer. In contrast, when cell extracts were prepared from BG pre-treated cells and aliquots were incubated with [(125)I]IBdG subsequently, the intensity of radiolabeled AGT band decreased linearly as a function of BG concentration. This suggests that the low level of [(125)I]IBdG that binds to AGT does so in a concentration dependent manner. These data suggest that IBdG is transported across the cell membrane to a higher degree than IBG. However, to be a practical tracer for quantifying cellular AGT, considerable localization of such derivatives need to occur within the cell nucleus where AGT is present predominantly.  相似文献   
55.
BACKGROUND: Targeted radiotherapy achieves malignant cell-specific concentration of radiation dosage by tumour-affinic molecules conjugated to radioactive atoms. Combining gene therapy with targeted radiotherapy is attractive because the associated cross-fire irradiation of the latter induces biological bystander effects upon neighbouring cells overcoming low gene transfer efficiency. METHODS: We sought to maximise the tumour specificity and efficacy of noradrenaline transporter (NAT) gene transfer combined with treatment using the radiopharmaceutical meta-[(131)I]iodobenzylguanidine ([(131)I]MIBG). Cell-kill was achieved by treatment with the beta-decay particle emitter [(131)I]MIBG or the alpha-particle emitter [(211)At]MABG. We utilised our novel transfected mosaic spheroid model (TMS) to determine whether this treatment strategy could result in sterilisation of spheroids containing only a small proportion of NAT-expressing cells. RESULTS: The concentrations of [(131)I]MIBG and [(211)At]MABG required to reduce to 0.1% the survival of clonogens derived from the TMS composed of 100% of NAT gene-transfected cells were 1.5 and 0.004 MBq/ml (RSV promoter), 8.5 and 0.0075 MBq/ml (hTR promoter), and 9.0 and 0.008 MBq/ml (hTERT promoter), respectively. The concentrations of radiopharmaceutical required to reduce to 0.1% the survival of clonogens derived from 5% RSV/NAT and 5% hTERT/NAT TMS were 14 and 23 MBq/ml, respectively, for treatment with [(131)I]MIBG and 0.018 and 0.028 MBq/ml, respectively, for treatment with [(211)At]MABG. CONCLUSIONS: These results indicate that the telomerase promoters have the capacity to drive the expression of the NAT. The potency of [(211)At]MABG is approximately three orders of magnitude greater than that of [(131)I]MIBG. Spheroids composed of only 5% of cells expressing NAT under the control of the RSV or hTERT promoter were sterilised by radiopharmaceutical treatment. This observation is indicative of bystander cell-kill.  相似文献   
56.
57.
58.
59.
Copper(II) 2,2′‐bipyridine (CuII(bpy))‐catalyzed alkaline hydrogen peroxide (AHP) pretreatment was performed on three biomass feedstocks including alkali pre‐extracted switchgrass, silver birch, and a hybrid poplar cultivar. This catalytic approach was found to improve the subsequent enzymatic hydrolysis of plant cell wall polysaccharides to monosaccharides for all biomass types at alkaline pH relative to uncatalyzed pretreatment. The hybrid poplar exhibited the most significant improvement in enzymatic hydrolysis with monomeric sugar release and conversions more than doubling from 30% to 61% glucan conversion, while lignin solubilization was increased from 36.6% to 50.2% and hemicellulose solubilization was increased from 14.9% to 32.7%. It was found that CuII(bpy)‐catalyzed AHP pretreatment of cellulose resulted in significantly more depolymerization than uncatalyzed AHP pretreatment (78.4% vs. 49.4% decrease in estimated degree of polymerization) and that carboxyl content the cellulose was significantly increased as well (fivefold increase vs. twofold increase). Together, these results indicate that CuII(bpy)‐catalyzed AHP pretreatment represents a promising route to biomass deconstruction for bioenergy applications. Biotechnol. Bioeng. 2013; 110: 1078–1086. © 2012 Wiley Periodicals, Inc.  相似文献   
60.
Mutations in CAV3 cause LQT syndrome 9 (LQT9). A previously reported LQT9 patient had prominent U waves on ECG, a feature that has been correlated with Kir2.1 loss of function. Our objective was to determine whether caveolin 3 (Cav3) associates with Kir2.1 and whether LQT9-associated CAV3 mutations affect the biophysical properties of Kir2.1. Kir2.1 current (IK1) density was measured using the whole-cell voltage clamp technique. WT-Cav3 did not affect IK1. However, F97C-Cav3 and T78M-Cav3 decreased IK1 density significantly by ∼60%, and P104L-Cav3 decreased IK1 density significantly by ∼30% at −60 mV. Immunostained rat heart cryosections and HEK293 cells cotransfected with Kir2.1 and WT-Cav3 both demonstrated colocalization of Kir2.1 and WT-Cav3 by confocal imaging. Cav3 coimmunoprecipitated with Kir2.1 in human ventricular myocytes and in heterologous expression systems. Additionally, FRET efficiency was highly specific, with a molecular distance of 5.6 ± 0.4 nm, indicating close protein location. Colocalization experiments found that Cav3 and Kir2.1 accumulated in the Golgi compartment. On-cell Western blot analysis showed decreased Kir2.1 cell surface expression by 60% when expressed with F97C-Cav3 and by 20% when expressed with P104L-Cav3 compared with WT-Cav3. This is the first report of an association between Cav3 and Kir2.1. The Cav3 mutations F97C-Cav3, P104L-Cav3, and T78M-Cav3 decreased IK1 density significantly. This effect was related to a reduced cell surface expression of Kir2.1. Kir2.1 loss of function is additive to the increase described previously in late INa, prolonging repolarization and leading to arrhythmia generation in Cav3-mediated LQT9.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号