首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   6篇
  2022年   1篇
  2021年   3篇
  2019年   6篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   3篇
  2012年   9篇
  2011年   7篇
  2010年   2篇
  2009年   6篇
  2008年   2篇
  2007年   6篇
  2006年   5篇
  2005年   1篇
  2004年   5篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   5篇
  1992年   2篇
  1991年   1篇
  1986年   1篇
  1985年   4篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
41.
42.
Salinity stress is one of the major factors negatively affecting growth and productivity in living organisms including plants and bacteria resulting in significant losses worldwide. Therefore, it would be fruitful to develop salinity stress tolerant useful species and also to understand the mechanism of stress tolerance. The pea DNA helicase 45 (PDH45) is a DNA and RNA helicase, homologous to eukaryotic translation initiation factor 4A (eIF-4A) and is involved in various processes including protein synthesis, maintaining the basic activities of the cell, upregulation of topoisomerase I activity and salinity stress tolerance in plant, but its role in salinity stress tolerance in bacteria has not heretofore been studied. This study provides an evidence for a novel function of the PDH45 gene in high salinity (NaCl) stress tolerance in bacteria (Eschericia coli, BL21 cells) also. Furthermore, it has been shown that the functionally active PDH45 gene is required to show the stress tolerance in bacteria because the single mutants (E183G or R363Q) and the double mutant (E183G + R363Q) of the gene could not confer the same function. The response was specific to Na+ ions as the bacteria could not grow in presence of LiCl. This study suggests that the cellular response to high salinity stress across prokaryotes and plant kingdom is conserved and also helps in our better understanding of mechanism of stress tolerance in bacteria and plants. It could also be very useful in developing high salinity stress tolerant useful bacteria of agronomic importance. Overall, this study provides an evidence for a novel function of the PDH45 gene in high salinity stress tolerance in bacteria.Key words: bacteria, cellular stress response, PDH45, pea, plant DNA helicase, salinity stress  相似文献   
43.
Vaid M  Singh T  Katiyar SK 《PloS one》2011,6(6):e21539
Melanoma is the leading cause of death from skin disease due, in large part, to its propensity to metastasize. We have examined the effect of grape seed proanthocyanidins (GSPs) on melanoma cancer cell migration and the molecular mechanisms underlying these effects using highly metastasis-specific human melanoma cell lines, A375 and Hs294t. Using in vitro cell invasion assays, we observed that treatment of A375 and Hs294t cells with GSPs resulted in a concentration-dependent inhibition of invasion or cell migration of these cells, which was associated with a reduction in the levels of cyclooxygenase (COX)-2 expression and prostaglandin (PG) E(2) production. Treatment of cells with celecoxib, a COX-2 inhibitor, or transient transfection of melanoma cells with COX-2 small interfering RNA, also inhibited melanoma cell migration. Treatment of cells with 12-O-tetradecanoylphorbol-13-acetate, an inducer of COX-2, enhanced the phosphorylation of ERK1/2, a protein of mitogen-activated protein kinase family, and subsequently cell migration whereas both GSPs and celecoxib significantly inhibited 12-O-tetradecanoylphorbol-13-acetate-promoted cell migration as well as phosphorylation of ERK1/2. Treatment of cells with UO126, an inhibitor of MEK, also inhibited the migration of melanoma cells. Further, GSPs inhibited the activation of NF-κB/p65, an upstream regulator of COX-2, in melanoma cells, and treatment of cells with caffeic acid phenethyl ester, an inhibitor of NF-κB, also inhibited cell migration. Additionally, inhibition of melanoma cell migration by GSPs was associated with reversal of epithelial-mesenchymal transition process, which resulted in an increase in the levels of epithelial biomarkers (E-cadherin and cytokeratins) while loss of mesenchymal biomarkers (vimentin, fibronectin and N-cadherin) in melanoma cells. Together, these results indicate that GSPs have the ability to inhibit melanoma cell invasion/migration by targeting the endogenous expression of COX-2 and reversing the process of epithelial-to-mesenchymal transition.  相似文献   
44.
R Prasad  M Vaid  SK Katiyar 《PloS one》2012,7(8):e43064
Pancreatic cancer is an aggressive malignancy that is frequently diagnosed at an advanced stage with poor prognosis. Here, we report the chemotherapeutic effects of bioactive proanthocyanidins from grape seeds (GSPs) as assessed using In Vitro and In Vivo models. Treatment of human pancreatic cancer cells (Miapaca-2, PANC-1 and AsPC-1) with GSPs In Vitro reduced cell viability and increased G2/M phase arrest of the cell cycle leading to induction of apoptosis in a dose- and time-dependent manner. The GSPs-induced apoptosis of pancreatic cancer cells was associated with a decrease in the levels of Bcl-2 and Bcl-xl and an increase in the levels of Bax and activated caspase-3. Treatment of Miapaca-2 and PANC-1 cells with GSPs also decreased the levels of phosphatidylinositol-3-kinase (PI3K) and phosphorylation of Akt at ser(473). siRNA knockdown of PI3K from pancreatic cancer cells also reduced the phosphorylation of Akt. Further, dietary administration of GSPs (0.5%, w/w) as a supplemented AIN76A control diet significantly inhibited the growth of Miapaca-2 pancreatic tumor xenografts grown subcutaneously in athymic nude mice, which was associated with: (i) inhibition of cell proliferation, (ii) induction of apoptosis of tumor cells, (iii) increased expression of Bax, reduced expression of anti-apoptotic proteins and activation of caspase-3-positive cells, and (iv) decreased expression of PI3K and p-Akt in tumor xenograft tissues. Together, these results suggest that GSPs may have a potential chemotherapeutic effect on pancreatic cancer cell growth.  相似文献   
45.
We present an efficient computational architecture designed using supervised machine learning model to predict amyloid fibril forming protein segments, named AmylPepPred. The proposed prediction model is based on bio-physio-chemical properties of primary sequences and auto-correlation function of their amino acid indices. AmylPepPred provides a user friendly web interface for the researchers to easily observe the fibril forming and non-fibril forming hexmers in a given protein sequence. We expect that this stratagem will be highly encouraging in discovering fibril forming regions in proteins thereby benefit in finding therapeutic agents that specifically aim these sequences for the inhibition and cure of amyloid illnesses.

Availability

AmylPepPred is available freely for academic use at www.zoommicro.in/amylpeppred  相似文献   
46.
Lectin receptor-like kinases (LecRLKs) are class of membrane proteins found in higher plants that are involved in diverse functions ranging from plant growth and development to stress tolerance. The basic structure of LecRLK protein comprises of a lectin and a kinase domain, which are interconnected by transmembrane region. Here we have identified LecRLKs from Arabidopsis and rice and studied these proteins on the basis of their expression profile and phylogenies. We were able to identify 32 G-type, 42 L-type and 1 C-type LecRLKs from Arabidopsis and 72 L-type, 100 G-type and 1 C-type LecRLKs from rice on the basis of their annotation and presence of lectin as well kinase domains. The whole family is rather intron-less. We have sub-grouped the gene family on the basis of their phylogram. Although on the basis of sequence the members of each group are closely associated but their functions vary to a great extent. The interacting partners and coexpression data of the genes revealed the importance of gene family in physiology and stress related responses. An in-depth analysis on gene-expression suggested clear demarcation in roles assigned to each gene. To gain additional knowledge about the LecRLK gene family, we searched for previously unreported motifs and checked their importance structurally on the basis of homology modelling. The analysis revealed that the gene family has important roles in diverse functions in plants, both in the developmental stages and in stress conditions. This study thus opens the possibility to explore the roles that LecRLKs might play in life of a plant.  相似文献   
47.
Cyclophilin proteins are the members of immunophillin group of proteins, known for their property of binding to the immune-suppressant drug cyclosporin A, hence named as cyclophilins. These proteins are characterized by the presence of peptidyl prolyl isomerase (PPIase) domain which catalyzes the cis-trans isomerisation process of proline residues. In the present study, an in-silico based approach was followed to identify and characterize the cyclophilin family from rice, Arabidopsis and yeast. We were able to identify 28 rice, 35 Arabidopsis and 8 yeast cyclophilin genes from their respective genomes on the basis of their annotation as well as the presence of highly conserved PPIase domain. The evolutionary relationship of the cyclophilin genes from the three genomes was analyzed using the phylogenetic tree. We have also classified the rice cyclophilin genes on the basis of localization of the protein in cell. The structural similarity of the cyclophilins was also analyzed on the basis of their homology model. The expression analysis performed using Genevestigator revealed a very strong stress responsive behavior of the gene family which was more prominent in later stages of stress. The study indicates the importance of the gene family in stress response as well as several developmental stages thus opening up many avenues for future study on the cyclophilin proteins.  相似文献   
48.
The DEAD-box RNA helicase family comprise enzymes that participate in every aspect of RNA metabolism, associated with a diverse range of cellular functions including response to abiotic stress. In the present study, we report on the identification of a new DEAD-box helicase ATP-binding protein (OsABP) from rice which is upregulated in response e to multiple abiotic stress treatments  including NaCl, dehydration, ABA, blue and red light. It possesses an ORF of 2772 nt, encoding a protein of 923 aa, which contains the DEAD and helicase C-terminal domains, along with the nine conserved motifs specific to DEAD-box helicases. The in silico putative interaction with other proteins showed that OsABP interacts with proteins involved in RNA metabolism, signal transduction or stress response. These results imply that OsABP might perform important functions in the cellular response to specific abiotic stress.  相似文献   
49.
The effects of electromagnetic field (EMF) exposure on biological systems have been studied for many years, both as a source of medical therapy and also for potential health risks. In particular, the mechanisms of EMF absorption in the human or animal body is of medical/engineering interest, and modern modelling techniques, such as the Finite Difference Time Domain (FDTD), can be utilized to simulate the voltages and currents induced in different parts of the body. The simulation of one particular component, the spinal cord, is the focus of this article, and this study is motivated by the fact that the spinal cord can be modelled as a linear conducting structure, capable of generating a significant amount of voltage from incident EMF. In this article, we show, through a FDTD simulation analysis of an incoming electromagnetic field (EMF), that the spinal cord acts as a natural antenna, with frequency dependent induced electric voltage and current distribution. The multi-frequency (100-2400?MHz) simulation results show that peak voltage and current response is observed in the FM radio range around 100?MHz, with significant strength to potentially cause changes in the CNS. This work can contribute to the understanding of the mechanism behind EMF energy leakage into the CNS, and the possible contribution of the latter energy leakage towards the weakening of the blood brain barrier (BBB), whose degradation is associated with the progress of many diseases, including Acquired Immuno-Deficiency Syndrome (AIDS).  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号