首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1060篇
  免费   97篇
  2023年   6篇
  2022年   14篇
  2021年   25篇
  2020年   13篇
  2019年   23篇
  2018年   27篇
  2017年   26篇
  2016年   31篇
  2015年   44篇
  2014年   60篇
  2013年   74篇
  2012年   69篇
  2011年   84篇
  2010年   41篇
  2009年   57篇
  2008年   65篇
  2007年   71篇
  2006年   74篇
  2005年   69篇
  2004年   52篇
  2003年   51篇
  2002年   69篇
  2001年   10篇
  2000年   6篇
  1999年   15篇
  1998年   10篇
  1997年   13篇
  1996年   12篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有1157条查询结果,搜索用时 109 毫秒
21.
Cdc42 is a small RhoGTPase regulating multiple functions in eukaryotic cells. The activity of Cdc42 is significantly elevated in several tissues of aged mice, while the Cdc42 gain‐of‐activity mouse model presents with a premature aging‐like phenotype and with decreased lifespan. These data suggest a causal connection between elevated activity of Cdc42, aging, and reduced lifespan. Here, we demonstrate that systemic treatment of aged (75‐week‐old) female C57BL/6 mice with a Cdc42 activity‐specific inhibitor (CASIN) for 4 consecutive days significantly extends average and maximum lifespan. Moreover, aged CASIN‐treated animals displayed a youthful level of the aging‐associated cytokines IL‐1β, IL‐1α, and INFγ in serum and a significantly younger epigenetic clock as based on DNA methylation levels in blood cells. Overall, our data show that systemic administration of CASIN to reduce Cdc42 activity in aged mice extends murine lifespan.  相似文献   
22.
23.
24.
Biochemistry (Moscow) - The review presents current concepts of the molecular mechanisms of oxidative stress development and describes main stages of the free-radical reactions in oxidative stress....  相似文献   
25.
26.

Predicting the ecosystem effects of invasive species and the best control strategies requires understanding population dynamics and population regulation. Invasive bivalves zebra and quagga mussels (Dreissena spp.) are considered the most aggressive invaders in freshwaters and have become major drivers of ecosystem processes in the Laurentian Great Lakes. Combining all lake-wide studies of Dreissena spp. conducted in the Great Lakes, we found that invasion dynamics are largely governed by lake morphometry. Where both species are present, quagga mussels generally become dominant in 8–13 years. Thereafter, zebra mussels remain common in shallow lakes and embayments and lake-wide Dreissena density may remain similar, while in deep lakes quagga led to a near-complete displacement of zebra mussels and an ensuing dramatic increase in overall dreissenid density. In deep lakes, overall Dreissena biomass peaked later and achieved?~?threefold higher levels than in shallow lakes. Comparison with 21 waterbodies in North America and Europe colonized by both dreissenids confirmed that patterns of invasion dynamics found in the Great Lakes are very consistent with other waterbodies, and thus can be generalized to other lakes. Our biophysical model predicted that the long-term reduction in primary producers by mussel grazing may be fourfold less in deep compared to shallow lakes due to thermal stratification and a smaller proportion of the epilimnion in contact with the bottom. While this impact remains greatest in shallow areas, we show that when lakes are vertically well-mixed, dreissenid grazing impact may be greatest offshore, revealing a potentially strong offshore carbon and phosphorus sink.

  相似文献   
27.
New reagents (CPGs and phosphoramidites) for automatic solid phase synthesis of modified oligonucleotides were designed. Three oligonucleotides carrying fluorescent label at the 5′-terminus and an anchor group at the 3′-terminus were prepared and their immobilization in orthogonal conditions on solid supports was studied.  相似文献   
28.
Moldova has a rich historical and cultural heritage, which may be reflected in the current genetic makeup of its population. To date, no comprehensive studies exist about the population genetic structure of modern Moldavians. To bridge this gap with respect to paternal lineages, we analyzed 37 binary and 17 multiallelic (STRs) polymorphisms on the non-recombining portion of the Y chromosome in 125 Moldavian males. In addition, 53 Ukrainians from eastern Moldova and 54 Romanians from the neighboring eastern Romania were typed using the same set of markers. In Moldavians, 19 Y chromosome haplogroups were identified, the most common being I-M423 (20.8%), R-M17* (17.6%), R-M458 (12.8%), E-v13 (8.8%), R-M269* and R-M412* (both 7.2%). In Romanians, 14 haplogroups were found including I-M423 (40.7%), R-M17* (16.7%), R-M405 (7.4%), E-v13 and R-M412* (both 5.6%). In Ukrainians, 13 haplogroups were identified including R-M17 (34.0%), I-M423 (20.8%), R-M269* (9.4%), N-M178, R-M458 and R-M73 (each 5.7%). Our results show that a significant majority of the Moldavian paternal gene pool belongs to eastern/central European and Balkan/eastern Mediterranean Y lineages. Phylogenetic and AMOVA analyses based on Y-STR loci also revealed that Moldavians are close to both eastern/central European and Balkan-Carpathian populations. The data correlate well with historical accounts and geographical location of the region and thus allow to hypothesize that extant Moldavian paternal genetic lineages arose from extensive recent admixture between genetically autochthonous populations of the Balkan-Carpathian zone and neighboring Slavic groups.  相似文献   
29.
Methionine can be reversibly oxidized to methionine sulfoxide (MetO) under physiological conditions. Organisms evolved two distinct methionine sulfoxide reductase families (MSRA & MSRB) to repair oxidized methionine residues. We found that 5 MSRB genes exist in the soybean genome, including GmMSRB1 and two segmentally duplicated gene pairs (GmMSRB2 and GmMSRB5, GmMSRB3 and GmMSRB4). GmMSRB2 and GmMSRB4 proteins showed MSRB activity toward protein-based MetO with either DTT or thioredoxin (TRX) as reductants, whereas GmMSRB1 was active only with DTT. GmMSRB2 had a typical MSRB mechanism with Cys121 and Cys 68 as catalytic and resolving residues, respectively. Surprisingly, this enzyme also possessed the MSRB activity toward free Met-R-O with kinetic parameters similar to those reported for fRMSR from Escherichia coli, an enzyme specific for free Met-R-O. Overexpression of GmMSRB2 or GmMSRB4 in the yeast cytosol supported the growth of the triple MSRA/MSRB/fRMSR (Δ3MSRs) mutant on MetO and protected cells against H2O2-induced stress. Taken together, our data reveal an unexpected diversity of MSRBs in plants and indicate that, in contrast to mammals that cannot reduce free Met-R-O and microorganisms that use fRMSR for this purpose, plants evolved MSRBs for the reduction of both free and protein-based MetO.  相似文献   
30.
Copper-containing ferroxidase ceruloplasmin (Cp) forms binary and ternary complexes with cationic proteins lactoferrin (Lf) and myeloperoxidase (Mpo) during inflammation. We present an X-ray crystal structure of a 2Cp-Mpo complex at 4.7 Å resolution. This structure allows one to identify major protein–protein interaction areas and provides an explanation for a competitive inhibition of Mpo by Cp and for the activation of p-phenylenediamine oxidation by Mpo. Small angle X-ray scattering was employed to construct low-resolution models of the Cp-Lf complex and, for the first time, of the ternary 2Cp-2Lf-Mpo complex in solution. The SAXS-based model of Cp-Lf supports the predicted 1∶1 stoichiometry of the complex and demonstrates that both lobes of Lf contact domains 1 and 6 of Cp. The 2Cp-2Lf-Mpo SAXS model reveals the absence of interaction between Mpo and Lf in the ternary complex, so Cp can serve as a mediator of protein interactions in complex architecture. Mpo protects antioxidant properties of Cp by isolating its sensitive loop from proteases. The latter is important for incorporation of Fe3+ into Lf, which activates ferroxidase activity of Cp and precludes oxidation of Cp substrates. Our models provide the structural basis for possible regulatory role of these complexes in preventing iron-induced oxidative damage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号