首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1045篇
  免费   90篇
  1135篇
  2023年   7篇
  2022年   14篇
  2021年   25篇
  2020年   13篇
  2019年   24篇
  2018年   27篇
  2017年   24篇
  2016年   30篇
  2015年   42篇
  2014年   58篇
  2013年   73篇
  2012年   64篇
  2011年   83篇
  2010年   39篇
  2009年   55篇
  2008年   65篇
  2007年   72篇
  2006年   72篇
  2005年   69篇
  2004年   52篇
  2003年   50篇
  2002年   69篇
  2001年   9篇
  2000年   5篇
  1999年   15篇
  1998年   10篇
  1997年   13篇
  1996年   11篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
排序方式: 共有1135条查询结果,搜索用时 0 毫秒
891.

Background

Spot blotch, caused by Cochliobolus sativus, is one of the most widespread and harmful diseases in barley. Identification of genetic loci associated with resistance to C. sativus is of importance for future marker-assisted selection. The goal of the current study was to identify loci conferring seedling resistance to two different pathotypes of C. sativus in the Siberian spring barley core collection.

Results

A total of 96 spring barley cultivars and lines were phenotyped at the seedling stage with two C. sativus isolates (Kr2 and Ch3). According to the Fetch-Steffenson rating scale 16%/17% of genotypes were resistant and 26%/30% were moderate-resistant to the Kr2/Ch3 isolates respectively. A total of 94 genotypes were analyzed with the barley 50 K Illumina Infinium iSELECT assay. From 44,040 SNPs, 40,703 were scorable, from which 39,140 were polymorphic. 27,319 SNPs passed filtering threshold and were used for association mapping. Data analysis by GLM revealed 48 and 41 SNPs for Kr2 and Ch3 isolates, respectively. After application of 5% Bonferroni multiple test correction, only 3 and 27 SNPs were identified, respectively. A total of three genomic regions were associated with the resistance. The region on chromosome 3H associated with Ch3-resistance was expanded between markers SCRI_RS_97417 and JHI-Hv50k-2016-158003 and included 11 SNPs, from which JHI-Hv50k-2016-157070, JHI-Hv50k-2016-156842 had the lowest p-values. These two SNPs were also significant in case of Kr2 isolate. The region on chromosome 2H included 16 loci (7 of them with the lowest p-values were tightly linked to BOPA2_12_11504). Three loci corresponding to this region had suggestive p-values in case of Kr2 tests, so the locus on chromosome 2H may also contribute to resistance to Kr2 isolate. The third region with significant p-value in case of Kr2 tests was identified on chromosome 1H at the locus JHI-Hv50k-2016-33568.

Conclusions

Three genomic regions associated with the resistance to one or both isolates of C. sativus were identified via screening of the Siberian spring barley core collection. Comparison of their location with QTLs revealed previously either with biparental mapping populations studies or with GWAS of distinct germplasm and other isolates, demonstrated that resistance to isolates Kr2 and Ch3 is conferred by known spot blotch resistance loci. Information on SNPs related can be used further for development of DNA-markers convenient for diagnostics of resistance-associated alleles in barley breeding programs.
  相似文献   
892.
The duration of the photoreceptor's response to a light stimulus determines the speed at which an animal adjusts to ever-changing conditions of the visual environment. One critical component which regulates the photoresponse duration on the molecular level is the complex between the ninth member of the regulators of G protein signaling family (RGS9-1) and its partner, type 5 G protein beta-subunit (Gbeta5L). RGS9-1.Gbeta5L is responsible for the activation of the GTPase activity of the photoreceptor-specific G protein, transducin. Importantly, this function of RGS9-1.Gbeta5L is regulated by its membrane anchor, R9AP, which drastically potentiates the ability of RGS9-1.Gbeta5L to activate transducin GTPase. In this study, we address the kinetic mechanism of R9AP action and find that it consists primarily of a direct increase in the RGS9-1.Gbeta5L activity. We further showed that the binding site for RGS9-1.Gbeta5L is located within the N-terminal putative trihelical domain of R9AP, and even though this domain is sufficient for binding, it takes the entire R9AP molecule to potentiate the activity of RGS9-1.Gbeta5L. The mechanism revealed in this study is different from and complements another well-established mechanism of regulation of RGS9-1.Gbeta5L by the effector enzyme, cGMP phosphodiesterase, which is based entirely on the enhancement in the affinity between RGS9-1.Gbeta5L and transducin. Together, these mechanisms ensure timely transducin inactivation in the course of the photoresponse, a requisite for normal vision.  相似文献   
893.
Axl receptor tyrosine kinase exists as a transmembrane protein and as a soluble molecule. We show that constitutive and phorbol 12-myristate 13-acetate-induced generation of soluble Axl (sAxl) involves the activity of disintegrin-like metalloproteinase 10 (ADAM10). Spontaneous and inducible Axl cleavage was inhibited by the broad-spectrum metalloproteinase inhibitor GM6001 and by hydroxamate GW280264X, which is capable of blocking ADAM10 and ADAM17. Furthermore, murine fibroblasts deficient in ADAM10 expression exhibited a significant reduction in constitutive and inducible Axl shedding, whereas reconstitution of ADAM10 restored sAxl production, suggesting that ADAM10-mediated proteolysis constitutes a major mechanism for sAxl generation in mice. Partially overlapping 14-amino-acid stretch deletions in the membrane-proximal region of Axl dramatically affected sAxl generation, indicating that these regions are involved in regulating the access of the protease to the cleavage site. Importantly, relatively high circulating levels of sAxl are present in mouse sera in a heterocomplex with Axl ligand Gas6. Conversely, two other family members, Tyro3 and Mer, were not detected in mouse sera and conditioned medium. sAxl is constitutively released by murine primary cells such as dendritic and transformed cell lines. Upon immobilization, sAxl promoted cell migration and induced the phosphorylation of Axl and phosphatidylinositol 3-kinase. Thus, ADAM10-mediated generation of sAxl might play an important role in diverse biological processes.  相似文献   
894.
Characterizing Sec tRNAs that decode UGA provides one of the most direct and easiest means of determining whether an organism possesses the ability to insert selenocysteine (Sec) into protein. Herein, we used a combination of two techniques, computational to identify Sec tRNA genes and RT-PCR to sequence the gene products, to unequivocally demonstrate that two widely studied, model protozoans, Dictyostelium discoideum and Tetrahymena thermophila, encode Sec tRNA in their genomes. The advantage of using both procedures is that computationally we could easily detect potential Sec tRNA genes and then confirm by sequencing that the Sec tRNA was present in the tRNA population, and thus the identified gene was not a pseudogene. Sec tRNAs from both organisms decode UGA. T. thermophila Sec tRNA, like all other sequenced Sec tRNAs, is 90 nucleotides in length, while that from D. discoideum is 91 nucleotides long making it the longest eukaryotic sequenced to date. Evolutionary analyses of known Sec tRNAs reveal the two forms identified herein are the most divergent eukaryotic Sec tRNAs thus far sequenced.  相似文献   
895.
Applying hydrostatic pressure to biological systems and processes can alter their characteristics. In addition to its use as a basic research tool for investigating the kinetics and thermodynamics of biological systems at the molecular level, the application of pressure is also being used to modify the properties of biological materials to preserve or improve their qualities. This article reviews the principles underlying the observed effects of applied pressure on biological systems, and discusses current and potential application of pressure in biotechnological processes.  相似文献   
896.
Selenium is an important trace element that occurs in proteins in the form of selenocysteine (Sec) and in tRNAs in the form of selenouridine. Recent large-scale metagenomics projects provide an opportunity for understanding global trends in trace element utilization. Herein, we characterized the selenoproteome of the microbial marine community derived from the Global Ocean Sampling (GOS) expedition. More than 3,600 selenoprotein gene sequences belonging to 58 protein families were detected, including sequences representing 7 newly identified selenoprotein families, such as homologs of ferredoxin–thioredoxin reductase and serine protease. In addition, a new eukaryotic selenoprotein family, thiol reductase GILT, was identified. Most GOS selenoprotein families originated from Cys-containing thiol oxidoreductases. In both Pacific and Atlantic microbial communities, SelW-like and SelD were the most widespread selenoproteins. Geographic location had little influence on Sec utilization as measured by selenoprotein variety and the number of selenoprotein genes detected; however, both higher temperature and marine (as opposed to freshwater and other aquatic) environment were associated with increased use of this amino acid. Selenoproteins were also detected with preference for either environment. We identified novel fusion forms of several selenoproteins that highlight redox activities of these proteins. Almost half of Cys-containing SelDs were fused with NADH dehydrogenase, whereas such SelD forms were rare in terrestrial organisms. The selenouridine utilization trait was also analyzed and showed an independent evolutionary relationship with Sec utilization. Overall, our study provides insights into global trends in microbial selenium utilization in marine environments.  相似文献   
897.
The tropical Andes harbor a major part of the world's plant biodiversity. The montane cacti of the tribes Browningieae, Cereeae, and Trichocereeae underwent extensive radiation and thus are well suited as a model group to study the diversification of Andean plants. We reconstructed their phylogeny employing three noncoding chloroplast regions and explained it in the context of the geological history of South America. We found that the clade of cephalia-bearing cacti with naked pericarpels is centered in northeastern Brazil, whereas almost all other clades comprise Andean species. The spatial split between the clades was probably caused by the Andean uplift and the concurrent formation of intracontinental marine basins in the Tertiary. The phylogenetic reconstructions based on parsimony and Bayesian approaches do not reflect the traditional delimitation of the tribes and of the large genera. Our results suggest that Rebutia s.l. and Echinopsis s.l. are not monophyletic and that Sulcorebutia, Weingartia, and Cintia should be united into one genus. Even though this "Weingartia-complex" and the genus Gymnocalycium are similar in size and morphological diversity, Gymnocalycium has a very high molecular divergence suggesting a comparably older radiation.  相似文献   
898.
Early cellular events associated with tumorigenesis often include loss of cell cycle checkpoints or alteration in growth signaling pathways. Identification of novel genes involved in cellular proliferation may lead to new classes of cancer therapeutics. By screening a tetracycline-inducible cDNA library in A549 cells for genes that interfere with proliferation, we have identified a fragment of UHRF1 (ubiquitin-like protein containing PHD and RING domains 1), a nuclear RING finger protein, that acts as a dominant negative effector of cell growth. Reduction of UHRF1 levels using an UHRF1-specific shRNA decreased growth rates in several tumor cell lines. In addition, treatment of A549 cells with agents that activated different cell cycle checkpoints resulted in down-regulation of UHRF1. The primary sequence of UHRF1 contains a PHD and a RING motif, both of which are structural hallmarks of ubiquitin E3 ligases. We have confirmed using an in vitro autoubiquitination assay that UHRF1 displays RING-dependent E3 ligase activity. Overexpression of a GFP-fused UHRF1 RING mutant that lacks ligase activity sensitizes cells to treatment with various chemotherapeutics. Taken together, our results suggest a general requirement for UHRF1 in tumor cell proliferation and implicate the RING domain of UHRF1 as a functional determinant of growth regulation.  相似文献   
899.
Over last decade, the use of Ni(II) complexes, derived from of glycine Schiff bases with chiral tridentate ligands, has emerge as a leading methodology for preparation of structurally diverse Tailor-Made Amino Acids, the key structural units in modern medicinal chemistry, and drug design. Here, we report asymmetric synthesis of derivatives of (S)-α-(octyl)glycine ((S)-2-aminodecanoic acid) and its N-Fmoc derivative via alkylation of chiral nucleophilic glycine equivalent with n-octyl bromide. Under the optimized conditions, the alkylation proceeds with excellent yield (98.1%) and diastereoselectivity (98.8% de). The observed stereochemical outcome and convenient reaction conditions bode well for application of this method for large-scale asymmetric synthesis of (S)-2-aminodecanoic acid and its derivatives.  相似文献   
900.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号