首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1027篇
  免费   90篇
  1117篇
  2023年   6篇
  2022年   13篇
  2021年   25篇
  2020年   13篇
  2019年   23篇
  2018年   26篇
  2017年   24篇
  2016年   29篇
  2015年   42篇
  2014年   58篇
  2013年   72篇
  2012年   64篇
  2011年   81篇
  2010年   39篇
  2009年   53篇
  2008年   65篇
  2007年   68篇
  2006年   71篇
  2005年   67篇
  2004年   52篇
  2003年   50篇
  2002年   69篇
  2001年   9篇
  2000年   5篇
  1999年   15篇
  1998年   10篇
  1997年   13篇
  1996年   11篇
  1995年   8篇
  1994年   6篇
  1993年   6篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1983年   4篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1978年   2篇
排序方式: 共有1117条查询结果,搜索用时 0 毫秒
101.
Selenocysteine (Sec), the 21st amino acid in protein, is encoded by UGA. The Sec insertion sequence (SECIS) element, which is the stem-loop structure present in 3' untranslated regions (UTRs) of eukaryotic selenoprotein-encoding genes, is essential for recognition of UGA as a codon for Sec rather than as a stop signal. We now report the identification of a new eukaryotic selenoprotein, designated selenoprotein M (SelM). The 3-kb human SelM-encoding gene has five exons and is located on chromosome 22 but has not been correctly identified by either Celera or the public Human Genome Project. We characterized human and mouse SelM cDNA sequences and expressed the selenoprotein in various mammalian cell lines. The 3" UTR of the human, mouse, and rat SelM-encoding genes lacks a canonical SECIS element. Instead, Sec is incorporated in response to a conserved mRNA structure, in which cytidines are present in place of the adenosines previously considered invariant. Substitution of adenosines for cytidines did not alter Sec incorporation; however, other mutant structures did not support selenoprotein synthesis, demonstrating that this new form of SECIS element is functional. SelM is expressed in a variety of tissues, with increased levels in the brain. It is localized to the perinuclear structures, and its N-terminal signal peptide is necessary for protein translocation.  相似文献   
102.
Cationic peptides, known to disrupt bacterial membranes, are being developed as promising agents for therapeutic intervention against infectious disease. In the present study, we investigate structure-activity relationships in the bacterial membrane disruptor betapep-25, a peptide 33-mer. For insight into which amino acid residues are functionally important, we synthesized alanine-scanning variants of betapep-25 and assessed their ability to kill bacteria (Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus) and to neutralize LPS (lipopolysaccharide). Activity profiles were found to vary with the bacterial strain examined. Specific cationic and smaller hydrophobic alkyl residues were crucial to optimal bactericidal activity against the Gram-negative bacteria, whereas larger hydrophobic and cationic residues mediated optimal activity against Gram-positive Staph. aureus. Lysine-substituted norleucine (n-butyl group) variants demonstrated that both charge and alkyl chain length mediate optimal activity. In terms of LPS neutralization, activity profiles were essentially the same against four species of LPS (E. coli 055 and 0111, Salmonella enterica serotype Typhimurium and Klebsiella pneumoniae), and different for two others (Ps. aeruginosa and Serratia marcescens), with specific hydrophobic, cationic and, surprisingly, anionic residues being functionally important. Furthermore, disulfide-bridged analogues demonstrated that an anti parallel beta-sheet structure is the bioactive conformation of betapep-25 in terms of its bactericidal, but not LPS endotoxin neutralizing, activity. Moreover, betapep-25 variants, like the parent peptide, do not lyse eukaryotic cells. This research contributes to the development and design of novel antibiotics.  相似文献   
103.
The facile abstraction of bis-allylic hydrogens from polyunsaturated fatty acids (PUFAs) is the hallmark chemistry responsible for initiation and propagation of autoxidation reactions. The products of these autoxidation reactions can form cross-links to other membrane components and damage proteins and nucleic acids. We report that PUFAs deuterated at bis-allylic sites are much more resistant to autoxidation reactions, because of the isotope effect. This is shown using coenzyme Q-deficient Saccharomyces cerevisiae coq mutants with defects in the biosynthesis of coenzyme Q (Q). Q functions in respiratory energy metabolism and also functions as a lipid-soluble antioxidant. Yeast coq mutants incubated in the presence of the PUFA α-linolenic or linoleic acid exhibit 99% loss of colony formation after 4 h, demonstrating a profound loss of viability. In contrast, coq mutants treated with monounsaturated oleic acid or with one of the deuterated PUFAs, 11,11-D2-linoleic or 11,11,14,14-D4-α-linolenic acid, retain viability similar to wild-type yeast. Deuterated PUFAs also confer protection to wild-type yeast subjected to heat stress. These results indicate that isotope-reinforced PUFAs are stabilized compared to standard PUFAs, and they protect coq mutants and wild-type yeast cells against the toxic effects of lipid autoxidation products. These findings suggest new approaches to controlling ROS-inflicted cellular damage and oxidative stress.  相似文献   
104.

Background

The Immunoglobulins (IG) and the T cell receptors (TR) play the key role in antigen recognition during the adaptive immune response. Recent progress in next-generation sequencing technologies has provided an opportunity for the deep T cell receptor repertoire profiling. However, a specialised software is required for the rational analysis of massive data generated by next-generation sequencing.

Results

Here we introduce tcR, a new R package, representing a platform for the advanced analysis of T cell receptor repertoires, which includes diversity measures, shared T cell receptor sequences identification, gene usage statistics computation and other widely used methods. The tool has proven its utility in recent research studies.

Conclusions

tcR is an R package for the advanced analysis of T cell receptor repertoires after primary TR sequences extraction from raw sequencing reads. The stable version can be directly installed from The Comprehensive R Archive Network (http://cran.r-project.org/mirrors.html). The source code and development version are available at tcR GitHub (http://imminfo.github.io/tcr/) along with the full documentation and typical usage examples.  相似文献   
105.
The role of IKCa in cardiac repolarization remains controversial and varies across species. The relevance of the current as a therapeutic target is therefore undefined. We examined the cellular electrophysiologic effects of IKCa blockade in controls, chronic heart failure (HF) and HF with sustained atrial fibrillation. We used perforated patch action potential recordings to maintain intrinsic calcium cycling. The IKCa blocker (apamin 100 nM) was used to examine the role of the current in atrial and ventricular myocytes. A canine tachypacing induced model of HF (1 and 4 months, n = 5 per group) was used, and compared to a group of 4 month HF with 6 weeks of superimposed atrial fibrillation (n = 7). A group of age-matched canine controls were used (n = 8). Human atrial and ventricular myocytes were isolated from explanted end-stage failing hearts which were obtained from transplant recipients, and studied in parallel. Atrial myocyte action potentials were unchanged by IKCa blockade in all of the groups studied. IKCa blockade did not affect ventricular myocyte repolarization in controls. HF caused prolongation of ventricular myocyte action potential repolarization. IKCa blockade caused further prolongation of ventricular repolarization in HF and also caused repolarization instability and early afterdepolarizations. SK2 and SK3 expression in the atria and SK3 in the ventricle were increased in canine heart failure. We conclude that during HF, IKCa blockade in ventricular myocytes results in cellular arrhythmias. Furthermore, our data suggest an important role for IKCa in the maintenance of ventricular repolarization stability during chronic heart failure. Our findings suggest that novel antiarrhythmic therapies should have safety and efficacy evaluated in both atria and ventricles.  相似文献   
106.
HIF-1 alpha protein as a target for S-nitrosation   总被引:6,自引:0,他引:6  
Sumbayev VV  Budde A  Zhou J  Brüne B 《FEBS letters》2003,535(1-3):106-112
Hypoxia-inducible factor-1 alpha (HIF-1 alpha) is a master regulator to sense decreased oxygen partial pressure. HIF-1 alpha stability regulation initiates a complex biological response that allows cells to act appropriately to meet patho-physiological situations of decreased oxygen availability. Recently, nitric oxide emerged as a messenger with the ability to stabilize HIF-1 alpha and to transactivate HIF-1 under normoxia. Considering that reactive nitrogen species are recognized for post-translation protein modifications, among others S-nitrosation, we asked whether HIF-1 alpha is a target for S-nitrosation. In vitro NO+ donating NO donors such as GSNO and SNAP provoked massive S-nitrosation of purified HIF-1 alpha. All 15 free thiol groups found in human HIF-1 alpha are subjected to S-nitrosation. Thiol modification is not shared by spermine-NONOate, a NO radical donating compound. However, spermine-NONOate in the presence of O(2)(-), generated by xanthine/xanthine oxidase, regained S-nitrosation, most likely via formation of a N(2)O(3)-like species. In vitro, S-nitrosation of HIF-1 alpha was attenuated by the addition of GSH or ascorbate. In RCC4 and HEK293 cells GSNO or SNAP reproduced S-nitrosation of HIF-1 alpha, however with a significantly reduced potency that amounted to modification of three to four thiols, only. Importantly, endogenous formation of NO in RCC4 cells via inducible NO synthase elicited S-nitrosation of HIF-1 alpha that was sensitive to inhibition of inducible NO synthase activity with N-monomethyl-L-arginine. NO-stabilized HIF-1 alpha was susceptible to the addition of N-acetyl-cysteine that destabilized HIF-1 alpha in close correlation to the disappearance of S-nitrosated HIF-1 alpha. In conclusion, HIF-1 alpha is a target for S-nitrosation by exogenously and endogenously produced NO.  相似文献   
107.
Successful implementation of the global poliomyelitis eradication program raises the problem of vaccination against poliomyelitis in the posteradication era. One of the options under consideration envisions completely stopping worldwide the use of the Sabin vaccine. This strategy is based on the assumption that the natural circulation of attenuated strains and their derivatives is strictly limited. Here, we report the characterization of a highly evolved derivative of the Sabin vaccine strain isolated in a case of paralytic poliomyelitis from a 7-month-old immunocompetent baby in an apparently adequately immunized population. Analysis of the genome of this isolate showed that it is a double (type 1-type 2-type 1) vaccine-derived recombinant. The number of mutations accumulated in both the type 1-derived and type 2-derived portions of the recombinant genome suggests that both had diverged from their vaccine predecessors approximately 2 years before the onset of the illness. This fact, along with other recent observations, points to the possibility of long-term circulation of Sabin vaccine strain derivatives associated with an increase in their neurovirulence. Comparison of genomic sequences of this and other evolved vaccine-derived isolates reveals some general features of natural poliovirus evolution. They include a very high preponderance and nonrandom distribution of synonymous substitutions, conservation of secondary structures of important cis-acting elements of the genome, and an apparently adaptive character of most of the amino acid mutations, with only a few of them occurring in the antigenic determinants. Another interesting feature is a frequent occurrence of tripartite intertypic recombinants with either type 1 or type 3 homotypic genomic ends.  相似文献   
108.
In some aspects, homogeneous (all-in-solution) nucleic acid hybridization assays are superior to the traditionally used heterogeneous (solution-to-surface) alternatives. Profluorescent probes, which reveal fluorescence enhancement or fluorescence polarization upon their binding to DNA and RNA targets, are a paradigm for the real-time sequence-specific homogeneous detection of nucleic acids. A variety of such DNA or RNA-derived probes of different constructs has already been developed with numerous applications. However, the recent additions to the field - locked nucleic acids (LNAs) and peptide nucleic acids (PNAs) - significantly increase the potential of profluorescent probes and provide a robust impulse for their new uses.  相似文献   
109.
Protein-protein interactions play a central role in numerous processes in the cell and are one of the main fields of functional proteomics. This review highlights the methods of bioinformatics and functional proteomics of protein-protein interaction investigation. The structures and properties of contact surfaces, forces involved in protein-protein interactions, kinetic and thermodynamic parameters of these reactions were considered. The properties of protein contact surfaces depend on their functions. The contact surfaces of permanent complexes resemble domain contacts or the protein core and it is reasonable to consider such complex formation as a continuation of protein folding. Characteristics of contact surfaces of temporary protein complexes share some similarities with active sites of enzymes. The contact surfaces of the temporary protein complexes have unique structure and properties and they are more conservative in comparison with active site of enzymes. So they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations were undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or, on the contrary, to induce protein dimerization.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号