首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   395篇
  免费   64篇
  2021年   5篇
  2020年   4篇
  2019年   7篇
  2018年   4篇
  2017年   4篇
  2016年   16篇
  2015年   15篇
  2014年   13篇
  2013年   18篇
  2012年   16篇
  2011年   15篇
  2010年   20篇
  2009年   13篇
  2008年   11篇
  2007年   11篇
  2006年   9篇
  2005年   18篇
  2004年   9篇
  2003年   18篇
  2002年   21篇
  2001年   18篇
  2000年   14篇
  1999年   9篇
  1998年   12篇
  1997年   5篇
  1996年   8篇
  1995年   3篇
  1994年   8篇
  1993年   4篇
  1992年   5篇
  1991年   9篇
  1990年   5篇
  1989年   8篇
  1988年   6篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   10篇
  1983年   3篇
  1982年   8篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   5篇
  1976年   5篇
  1975年   4篇
  1971年   4篇
  1970年   3篇
  1969年   6篇
排序方式: 共有459条查询结果,搜索用时 15 毫秒
91.
Three hours after isolation, cultured hepatocytes have approximately 150,000 surface vasopressin receptors/cell, and these exhibit a Kd for 125I-vasopressin of 6 nM based on calculation of Koff/Kon, or a Kd of 9.5 nM based on Scatchard plot analysis. After the binding of 125I-vasopressin to its receptor on the hepatocyte surface, this complex is internalized with a t1/2 of 3-6 min. Following this internalization, the number of vasopressin receptors on the cell surface is restored both in vitro and in the isolated perfused liver with a t1/2 of 8-10 min. This restoration is blocked in vitro by incubation of the hepatocytes at 18 degrees C, but not by cycloheximide, suggesting that internalized vasopressin receptors recycle back to the cell surface. Prolonged incubation of hepatocytes with vasopressin results in the loss of greater than 75% of the vasopressin surface binding at concentrations of vasopressin approximately equivalent to its Kd. The binding of vasopressin to cultured hepatocytes 3-5 h after isolation resembles binding to the isolated perfused whole liver with respect to receptor dynamics. During culture for 48 h, however, we observe a progressive loss of hepatocyte surface vasopressin receptors. Concomitant with this reduction in surface receptors with time in culture, there appears to be a marked elevation in intracellular receptors.  相似文献   
92.
We have examined by Northern blot analysis the expression of two members of the glucose transporter family of genes (GLUT-1 and GLUT-2) in regenerating liver and in hepatocytes cultured under various conditions. GLUT-1, although thought to be a growth-associated gene, is not expressed in normal or regenerating liver, whereas GLUT-2, a liver-specific gene, is abundant in normal liver and gradually up-regulated during liver regeneration. Conversely, in hepatocytes cultured conventionally on dried rat tail collagen (RTC) in the presence of EGF and insulin, which potentiate proliferation, GLUT-1 mRNA is rapidly and abundantly expressed, whereas GLUT-2 is depressed. To investigate the causes of this "switch" in glucose transporter expression seen when hepatocytes are removed from the liver and cultured under the conventional proliferative conditions, we examined the effects of specific growth factors and extracellular matrices on cultured hepatocytes. EGF, a potent liver mitogen, although causing a threefold induction of GLUT-1, was found to have no effect on GLUT-2 expression, suggesting that the increase in GLUT-2 seen in regenerating liver is not due to EGF. Inhibition of protein synthesis by cycloheximide in cultured hepatocytes does not prevent the induction of GLUT-1 mRNA. In addition, treatment of cells with cycloheximide appears to stabilize the GLUT-2 mRNA, preventing the usual down-regulation of this gene in cultured hepatocytes. The expression of the two glucose transporter mRNAs also differed when the hepatocytes were adherent to particular cell matrices. Culture of hepatocytes on a reconstituted basement membrane gel matrix (EHS) is known to restrain their growth and mediate high levels of differentiated hepatocytic functions that are lost under conventional culture conditions. Unlike cells on RTC, hepatocytes on EHS expressed low levels of GLUT-1 mRNA, and decreased GLUT-2 mRNA. TGF-beta, an attenuator of DNA synthesis, when added to cultures on RTC, substantially down-regulated GLUT-2 but had no effect on GLUT-1. We propose that the effectors, EGF, TGF-beta and basement membrane components, play a significant role in the regulation of expression of GLUT-1 and GLUT-2 in hepatocytes.  相似文献   
93.
94.
Acorus calamus L is an amphibious plant, which is exposed to periods of flooding and consequently hypoxic conditions as a part of its natural life cycle. Previous experiments under laboratory conditions have shown that the plant can survive for two months in the complete absence of oxygen, and that during this period the expression of genes encoding the glycolytic enzymes fructose-1,6-bisphosphate aldolase (ALD), pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) is induced in leaves and rhizomes (Bucher and Kuhlemeier, 1993). Here we studied the expression of ALD and ADH through two years in the natural habitat of A. calamus. Under natural conditions roots and rhizomes were always submerged but newly grown leaves emerged in spring; in autumn the leaves senesced and the whole plant was submerged again. High Ald and Adh mRNA levels in leaf and rhizome were found only in winter when the leaves were entirely submerged. Upon leaf emergence in spring the mRNA levels rapidly declined. Under controlled experimental conditions expression of Ald and Adh was not induced by low temperature. The combination of laboratory and field experiments supports the hypothesis that oxygen deprivation rather than low temperature is a major regulator of glycolytic gene expression in A. calamus. The possible role of other environmental factors is also discussed.Abbreviations ADH alcohol dehydrogenase - Adh gene encoding ADH - ALD cytoplasmic fructose-1,6-bisphosphate aldolase - Ald gene encoding ALD - PDC pyruvate decarboxylase - Pdc gene encoding PDC  相似文献   
95.
We have previously described a method to capture, identify and quantify volatile components in expired breath. The purpose of this research is to provide a non-invasive means to measure biomarkers of metabolism in vivo. In the present studies, the effect of 1-aminobenzotriazole (ABT), an inhibitor of diverse cytochrome P450 (P450) enzymes, on the composition of volatile organic chemicals (VOCs) expired in the breath of male F-344 rats was determined in parallel with the catalytic activities and total content of hepatic P450. lntraperitoneal administration of ABT (100 mg kg-1) to rats resulted in markedly diminished hepatic microsomal P450 content and activities. The extent of inhibition was near maximal at 4 h, at which time approximately 50% of the total P450 content, about 65% of the CYPlA2 activity, 55% of the CYP2E1 activity, and about 80% of CYP2B activity were lost. Inhibition was maintained to 48 h post-dosing, but P450 content and activities had largely been restored by day 7. Concomitant with the inhibition of P450 were corresponding increases (up to several hundred-fold) in the molar amount of volatiles appearing in the breath of ABT-treated animals, and the rebound of P450 levels was attended by corresponding decreases in the appearance of breath volatiles. These studies indicate that P450 plays a major role in the metabolism of VOCs appearing in breath, and that these chemicals can serve as markers on P450 activity in vivo.  相似文献   
96.
97.
The PROSITE database, its status in 1997.   总被引:43,自引:4,他引:39       下载免费PDF全文
The PROSITE database consists of biologically significant patterns and profiles formulated in such a way that with appropriate computational tools it can help to determine to which known family of protein (if any) a new sequence belongs, or which known domain(s) it contains.  相似文献   
98.
Flavonols are a group of secondary metabolites that affect diverse cellular processes. They are considered putative negative regulators of the transport of the phytohormone auxin, by which they influence auxin distribution and concomitantly take part in the control of plant organ development. Flavonols are accumulating in a large number of glycosidic forms. Whether these have distinct functions and diverse cellular targets is not well understood. The rol1-2 mutant of Arabidopsis thaliana is characterized by a modified flavonol glycosylation profile that is inducing changes in auxin transport and growth defects in shoot tissues. To determine whether specific flavonol glycosides are responsible for these phenotypes, a suppressor screen was performed on the rol1-2 mutant, resulting in the identification of an allelic series of UGT89C1, a gene encoding a flavonol 7-O-rhamnosyltransferase. A detailed analysis revealed that interfering with flavonol rhamnosylation increases the concentration of auxin precursors and auxin metabolites, whereas auxin transport is not affected. This finding provides an additional level of complexity to the possible ways by which flavonols influence auxin distribution and suggests that flavonol glycosides play an important role in regulating plant development.  相似文献   
99.
100.
Intestinal epithelial cells (IECs) constitute the primary barrier that separates us from the outside environment. These cells, lining the surface of the intestinal tract, represent a major challenge that enteric pathogens have to face. How IECs respond to viral infection and whether enteric viruses have developed strategies to subvert IECs innate immune response remains poorly characterized. Using mammalian reovirus (MRV) as a model enteric virus, we found that the intermediate subviral particles (ISVPs), which are formed in the gut during the natural course of infection by proteolytic digestion of the reovirus virion, trigger reduced innate antiviral immune response in IECs. On the contrary, infection of IECs by virions induces a strong antiviral immune response that leads to cellular death. Additionally, we determined that virions can be sensed by both TLR and RLR pathways while ISVPs are sensed by RLR pathways only. Interestingly, we found that ISVP infected cells secrete TGF‐β acting as a pro‐survival factor that protects IECs against virion induced cellular death. We propose that ISVPs represent a reovirus strategy to initiate primary infection of the gut by subverting IECs innate immune system and by counteracting cellular‐death pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号