首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1264篇
  免费   107篇
  国内免费   1篇
  2023年   7篇
  2022年   23篇
  2021年   35篇
  2020年   16篇
  2019年   22篇
  2018年   26篇
  2017年   24篇
  2016年   29篇
  2015年   44篇
  2014年   51篇
  2013年   67篇
  2012年   92篇
  2011年   94篇
  2010年   43篇
  2009年   42篇
  2008年   69篇
  2007年   69篇
  2006年   57篇
  2005年   55篇
  2004年   55篇
  2003年   56篇
  2002年   35篇
  2001年   27篇
  2000年   18篇
  1999年   22篇
  1998年   13篇
  1997年   11篇
  1996年   15篇
  1995年   15篇
  1994年   14篇
  1993年   6篇
  1992年   10篇
  1991年   22篇
  1990年   11篇
  1989年   9篇
  1988年   11篇
  1987年   10篇
  1986年   10篇
  1983年   7篇
  1982年   7篇
  1979年   6篇
  1978年   7篇
  1976年   8篇
  1975年   6篇
  1974年   7篇
  1973年   8篇
  1971年   6篇
  1970年   11篇
  1969年   7篇
  1968年   10篇
排序方式: 共有1372条查询结果,搜索用时 15 毫秒
121.
Rhizobium sp. strain NGR234, which is capable of interacting with a large number of legumes, utilizes a variety of signaling molecules to establish nitrogen-fixing symbioses. Among these are nodulation outer proteins (Nops) that transit through a type III secretion system (TTSS). Abolition of Nop secretion affects nodulation of certain legumes. Under free-living conditions, the secretion of Nops can be induced by the addition of flavonoids. Here, we show that an in-frame deletion of nopA abolishes secretion of all other Nops and has the same impact on nodule formation as mutations that lead to a nonfunctional TTSS. This secretion-minus phenotype of the nopA mutant, as well as bioinformatics analysis of NopA itself, suggests that NopA could be an external component of the TTSS. Electron microscopy showed that NGR234 synthesizes fibrillar structures on the cell surface in a flavonoid-inducible and NopA-dependent manner. Purification of the macromolecular surface appendages revealed that NopA is a major component of these structures.  相似文献   
122.
Manganese Oxidation by Bacterial Isolates from the Indian Ridge System   总被引:1,自引:0,他引:1  
The abundance and activity of culturable manganese-oxidizing bacteria were assessed from near-bottom water samples of the tectonically active Carlsberg Ridge. Retrievable counts as colony forming units (CFU) on dilute nutrient agar medium (dilNA = 2 gm l−1 nutrient broth+2% agar) and on dilNA supplemented with 1, 2 and 3 mM MnCl2·4H2O were in the order of 106 CFU l−1. Retrievability of heterotrophs ranged from non-detectable levels (ND) to 2.82 × 106 CFU l−1. The retrievable counts on Mn amended dilNA ranged from ND to 3.21× 106, 1.47 × 106 and 1.45 × 106 CFU l−1 on 1, 2 and 3 mM, respectively. About 87% of the Mn tolerant isolates (n = 39) showed taxonomic affinities to Pseudomonas I and II sp. Two representative strains CR35 and CR48 (CR–Carlsberg Ridge) isolated on manganese-supplemented media were tested for their ability to tolerate a range of Mn amendments from 1 nM to 100 mM in terms of growth and respiration. CR35 represents 66% of the total CFU (3.04 × 106 CFU l−1), while CR48 represented only 6% of the total CFU (1.05 × 106 CFU l−1). The colonies of these two isolates were dark brown in color suggesting precipitation of Mn as oxide. Tests for the effect on growth and respiration were conducted in media simulating heterotrophic (amended with 0.01% glucose) and lithotrophic (unamended) conditions. Maximum stimulation in growth and respiration of CR35 occurred at 100 μM Mn both in unamended and amended media. At levels of Mn greater than 100 μM the counts decreased steadily. Total respiring cells of CR48 were stimulated to a maximum at 1 μM Mn in unamended medium and 1 nM in amended medium. Total cells counts for the same decreased beyond 100 μM Mn in unamended and 1 nM in amended medium. The isolates were tested for their ability to oxidize Mn ammendments from 1 μM to 10 mM Mn. At the end of a 76-day incubation period, there was evidence of manganese oxide precipitation at high Mn concentrations (≥1 mM) as a dark brown coloration on the sides of culture tubes. Highest Mn oxidation rates were observed at 10 mM Mn(II) concentration with CR35 oxidizing 27 and 25 μM Mn day−1 in unamended and amended condition, respectively. CR48 oxidized Mn at the rate of 26 μM Mn day−1 in unamended medium and 35 μM Mn day−1 in amended medium. Scanning electron microscope (SEM) observations of both isolates revealed free-living cells in clustered matrices ≈2 μm diameter. Energy dispersive spectrum of the cell matrix of CR35 cultured in 1 mM Mn detected 30% Mn, while the cell aggregates of CR48 harbored 7–10% Mn. The relatively high specific activity of these mixotrophic bacteria under relatively oligotrophic conditions suggests that they may be responsible for scavenging dissolved Mn from the Carlsberg Ridge waters and could potentially participate in oxidation.  相似文献   
123.
Low expression of the CD3zeta chain has been reported in patients with cancer and it has been suggested that tumor-derived factors are involved in its downregulation. The expression of CD3zeta chain was measured in T-cell lines from patients with gastric adenocarcinoma and healthy volunteers and grown in vitro for several months and, hence, in the absence of any tumor-derived factors. T-cell lines of mucosal origin were obtained by Herpesvirus saimiri transformation from gastric cancer patients. The expression of CD3zeta and CD3epsilon was measured by flow cytometry and Western-blot analysis. Calcium mobilization and apoptosis rate were also measured. The levels of CD3zeta, but not CD3epsilon, chain on the cell surface were significantly reduced in T-cell lines derived from patients with gastric cancer when cultured in the absence of IL-2. Western-blot analysis of total cell extracts or lipid raft fractions confirmed this finding. Calcium mobilization, a measure of signal transduction, was reduced in T cell lines from patients with gastric cancer. We conclude that T cells from patients with cancer express lower levels of CD3zeta. This downregulation is not caused by a direct effect of tumor-derived factors but, rather, it appears to be inherent to the patient cells. The low CD3zeta expression would render T lymphocytes unable to control the growth of tumor cells.  相似文献   
124.
It was recently shown experimentally that the friction coefficient of articular cartilage correlates with the interstitial fluid pressurization, supporting the hypothesis that interstitial water pressurization plays a fundamental role in the frictional response by supporting most of the load during the early time response. A recent study showed that enzymatic treatment with chondroitinase ABC causes a decrease in the maximum fluid load support of bovine articular cartilage in unconfined compression. The hypothesis of this study is that treatment with chondroitinase ABC will increase the friction coefficient of articular cartilage in stress relaxation. Articular cartilage samples (n = 34) harvested from the femoral condyles of five bovine knee joints (1-3 months old) were tested in unconfined compression with simultaneous continuous sliding (+/-1.5 mm at 1 mm/s) under stress relaxation. Results showed a significantly higher minimum friction coefficient in specimens treated with 0.1 micro/ml of chondroitinase ABC for 24 h (micro(min) = 0.082+/-0.024) compared to control specimens (micro(min) = 0.047+/-0.014). Treated samples also exhibited higher equilibrium friction coefficient (micro(eq) = 0.232+/-0.049) than control samples (micro(eq) = 0.184+/-0.036), which suggest that the frictional response is greatly influenced by the degree of tissue degradation. The fluid load support was predicted from theory, and the maximum value (as a percentage of the total applied load) was lower in treated specimens (77+/-12%) than in control specimens (85+/-6%). Based on earlier findings, the increase in the ratio micro(min)/micro(eq) may be attributed to the decrease in fluid load support.  相似文献   
125.
Crystal structures of the tetrameric KcsA K+ channel reveal seven distinct binding sites for K+ ions within the central pore formed at the fourfold rotational symmetry axis. Coordination of an individual K+ ion by eight protein oxygen atoms within the selectivity filter suggests that ion-subunit bridging by cation-oxygen interactions contributes to structural stability of the tetramer. To test this hypothesis, we examined the effect of inorganic cations on the temperature dependence of the KcsA tetramer as monitored by SDS-PAGE. Inorganic cations known to permeate or strongly block K+ channels (K+, Rb+, Cs+, Tl+, NH4+, Ba2+, and Sr2+) confer tetramer stability at higher temperatures (T0.5 range = 87 degrees C to >99 degrees C) than impermeant cations and weak blockers (Li+, Na+, Tris+, choline+; T0.5 range = 59 degrees C to 77 degrees C). Titration of K+, Ba2+, and other stabilizing cations protects against rapid loss of KcsA tetramer observed in 100 mM choline Cl at 90 degrees C. Tetramer protection titrations of K+, Rb+, Cs+, Tl+, and NH4+ at 85 degrees C or 90 degrees C exhibit apparent Hill coefficients (N) ranging from 1.7 to 3.3 and affinity constants (K0.5) ranging from 1.1 to 9.6 mM. Ba2+ and Sr2+ titrations exhibit apparent one-site behavior (N congruent with 1) with K0.5 values of 210 nM and 11 microM, respectively. At 95 degrees C in the presence of 5 mM K+, titration of Li+ or Na+ destabilizes the tetramer with K0.5 values of 57 mM and 109 mM, respectively. We conclude that specific binding interactions of inorganic cations with the selectivity filter are an important determinant of tetramer stability of KscA.  相似文献   
126.
Individual contributions made by different calcium release and sequestration mechanisms to various aspects of excitable cell physiology are incompletely understood. SERCA, a sarco-endoplasmic reticulum calcium ATPase, being the main agent for calcium uptake into the ER, plays a central role in this process. By isolation and extensive characterization of conditional mutations in the Drosophila SERCA gene, we describe novel roles of this key protein in neuromuscular physiology and enable a genetic analysis of SERCA function. At motor nerve terminals, SERCA inhibition retards calcium sequestration and reduces the amplitude of evoked excitatory junctional currents. This suggests a direct contribution of store-derived calcium in determining the quantal content of evoked release. Conditional paralysis of SERCA mutants is also marked by prolonged neural activity-driven muscle contraction, thus reflecting the phylogenetically conserved role of SERCA in terminating contraction. Further analysis of ionic currents from mutants uncovers SERCA-dependent mechanisms regulating voltage-gated calcium channels and calcium-activated potassium channels that together control muscle excitability. Finally, our identification of dominant loss-of-function mutations in SERCA indicates novel intra- and intermolecular interactions for SERCA in vivo, overlooked by current structural models.  相似文献   
127.
During infection with lymphocytic choriomeningitis virus, CD8(+) T cells differentiate rapidly into effectors (CD62L(low)CD44(high)) that differentiate further into the central memory phenotype (CD62L(high)CD44(high)) gradually. To evaluate whether this CD8(+) T cell differentiation program operates in all infection models, we evaluated CD8(+) T cell differentiation during infection of mice with recombinant intracellular bacteria, Listeria monocytogenes (LM) and Mycobacterium bovis (BCG), expressing OVA. We report that CD8(+) T cells primed during infection with the attenuated pathogen BCG-OVA differentiated primarily into the central subset that correlated to reduced attrition of the primed cells subsequently. CD8(+) T cells induced by LM-OVA also differentiated into central phenotype cells first, but the cells rapidly converted into effectors in contrast to BCG-OVA. Memory CD8(+) T cells induced by both LM-OVA as well as BCG-OVA were functional in that they produced cytokines and proliferated extensively in response to antigenic stimulation after adoptive transfer. During LM-OVA infection, if CD8(+) T cells were guided to compete for access to APCs, then they received reduced stimulation that was associated with increased differentiation into the central subset and reduced attrition subsequently. Similar effect was observed when CD8(+) T cells encountered APCs selectively during the waning phase of LM-OVA infection. Taken together, our results indicate that the potency of the pathogen can influence the differentiation and fate of CD8(+) T cells enormously, and the extent of attrition of primed CD8(+) T cells correlates inversely to the early differentiation of CD8(+) T cells primarily into the central CD8(+) T cell subset.  相似文献   
128.
We generated kinase-positive and kinase-negative erbB2 tagged with YFP and the long form of leptin receptor (LEPRb) tagged with CFP. Both were as active as their untagged analogs. Both short and long isoforms of leptin receptor phosphorylated and thereby activated erbB2 upon leptin binding and enhanced MAPK activity. Our results unveil a novel route by which leptin may provoke erbB2's phosphorylation and thus enhance its oncogenic potential independently of HER family ligands or its overexpression. Using FRET technology in living cells, we found no evidence of complex formation between erbB2 and prolactin or leptin receptors, indicating that the transactivation occurs through an indirect interaction.  相似文献   
129.
This study documents the detailed biochemical, structural, and functional identity of a novel Ca(2+)-modulated membrane guanylate cyclase transduction system in the inner retinal neurons. The guanylate cyclase is the previously characterized ROS-GC1 from the photoreceptor outer segments (PROS), and its new modulator is neurocalcin delta. At the membrane, the myristoylated form of neurocalcin delta senses submicromolar increments in free Ca(2+), binds to its specific ROS-GC1 domain, and stimulates the cyclase. Neurocalcin delta is not present in PROS, indicating the absence of the pathway in the outer segments and the dissociation of its linkage with phototransduction. Thus, the pathway is linked specifically with the visual transduction machinery in the secondary neurons of the retina. With the inclusion of this pathway, the findings broaden the understanding of the existing mechanisms showing how ROS-GC1 is able to receive and transduce diverse Ca(2+) signals into the cell-specific generation of second-messenger cyclic GMP in the retinal neurons.  相似文献   
130.
Keratins modulate colonocyte electrolyte transport via protein mistargeting   总被引:6,自引:0,他引:6  
The function of intestinal keratins is unknown, although keratin 8 (K8)-null mice develop colitis, hyperplasia, diarrhea, and mistarget jejunal apical markers. We quantified the diarrhea in K8-null stool and examined its physiologic basis. Isolated crypt-units from K8-null and wild-type mice have similar viability. K8-null distal colon has normal tight junction permeability and paracellular transport but shows decreased short circuit current and net Na absorption associated with net Cl secretion, blunted intracellular Cl/HCO3-dependent pH regulation, hyperproliferation and enlarged goblet cells, partial loss of the membrane-proximal markers H,K-ATPase-beta and F-actin, increased and redistributed basolateral anion exchanger AE1/2 protein, and redistributed Na-transporter ENaC-gamma. Diarrhea and protein mistargeting are observed 1-2 d after birth while hyperproliferation/inflammation occurs later. The AE1/2 changes and altered intracellular pH regulation likely account, at least in part, for the ion transport defects and hyperproliferation. Therefore, colonic keratins have a novel function in regulating electrolyte transport, likely by targeting ion transporters to their cellular compartments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号