首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   41篇
  2022年   5篇
  2019年   5篇
  2018年   9篇
  2017年   8篇
  2016年   7篇
  2015年   13篇
  2014年   27篇
  2013年   28篇
  2012年   29篇
  2011年   24篇
  2010年   18篇
  2009年   17篇
  2008年   15篇
  2007年   14篇
  2006年   19篇
  2005年   19篇
  2004年   15篇
  2003年   16篇
  2002年   13篇
  2001年   7篇
  2000年   6篇
  1999年   5篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1992年   3篇
  1991年   7篇
  1990年   6篇
  1989年   8篇
  1988年   3篇
  1987年   12篇
  1986年   6篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1980年   6篇
  1979年   6篇
  1974年   6篇
  1973年   4篇
  1972年   4篇
  1971年   4篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
  1967年   3篇
  1966年   3篇
排序方式: 共有466条查询结果,搜索用时 456 毫秒
131.
Bacteria frequently engage in cross-feeding interactions that involve an exchange of metabolites with other micro- or macroorganisms. The often obligate nature of these associations, however, hampers manipulative experiments, thus limiting our mechanistic understanding of the ecophysiological consequences that result for the organisms involved. Here we address this issue by taking advantage of a well-characterized experimental model system, in which auxotrophic genotypes of E. coli derive essential amino acids from prototrophic donor cells using intercellular nanotubes. Surprisingly, donor–recipient cocultures revealed that the mere presence of auxotrophic genotypes was sufficient to increase amino acid production levels of several prototrophic donor genotypes. Our work is consistent with a scenario, in which interconnected auxotrophs withdraw amino acids from the cytoplasm of donor cells, which delays feedback inhibition of the corresponding amino acid biosynthetic pathway and, in this way, increases amino acid production levels. Our findings indicate that in newly established mutualistic associations, an intercellular regulation of exchanged metabolites can simply emerge from the architecture of the underlying biosynthetic pathways, rather than requiring the evolution of new regulatory mechanisms.  相似文献   
132.

Background

Palmitoylation is a 16-carbon lipid post-translational modification that increases protein hydrophobicity. This form of protein fatty acylation is emerging as a critical regulatory modification for multiple aspects of cellular interactions and signaling. Despite recent advances in the development of chemical tools for the rapid identification and visualization of palmitoylated proteins, the palmitoyl proteome has not been fully defined. Here we sought to identify and compare the palmitoylated proteins in murine fibroblasts and dendritic cells.

Results

A total of 563 putative palmitoylation substrates were identified, more than 200 of which have not been previously suggested to be palmitoylated in past proteomic studies. Here we validate the palmitoylation of several new proteins including Toll-like receptors (TLRs) 2, 5 and 10, CD80, CD86, and NEDD4. Palmitoylation of TLR2, which was uniquely identified in dendritic cells, was mapped to a transmembrane domain-proximal cysteine. Inhibition of TLR2 S-palmitoylation pharmacologically or by cysteine mutagenesis led to decreased cell surface expression and a decreased inflammatory response to microbial ligands.

Conclusions

This work identifies many fatty acylated proteins involved in fundamental cellular processes as well as cell type-specific functions, highlighting the value of examining the palmitoyl proteomes of multiple cell types. S-palmitoylation of TLR2 is a previously unknown immunoregulatory mechanism that represents an entirely novel avenue for modulation of TLR2 inflammatory activity.
  相似文献   
133.
We have isolated and in silico characterized a cold regulated plastocyanin encoding gene from Lepidium latifolium L designated as LlaDRT. Its cDNA sequence (JN214346) consists of a 504 bp ORF, 48 and 205 bp of 5′ and 3′ UTR regions, respectively encoding a protein of 17.07 KDa and pI 4.95. In silico and phylogenetic analysis of LlaDRT suggested that the protein has features of a typical plastocyanin family member and of a nearest relative of the predominant isoform of Arabidopsis (PETE2) plastocyanin. Validation of stress response of LlaDRT by qPCR under different abiotic stress regulators viz salicylic acid, jasmonic acid, calcium chloride, ethylene and abscisic acid revealed its possible regulation and crosstalk amongst different pathways.  相似文献   
134.
Knowledge on heritability is essential for selecting varieties resistant against coffee wilt disease caused by Fusarium xylarioides, which is currently devastating coffee in East and Central Africa. Variability of the resistance against coffee wilt disease in Coffea canephora and its inheritance were investigated in three experiments corresponding to a clonal trial involving 20 clones, a 10-parent partial diallel progeny, and a half-sib progeny test. There were significant quantitative genetic variations among the clones and progenies, suggesting polygenic control of the resistance. Around 50–65 % tree mortality was the optimal disease level for calculating heritability and genetic gains. General and specific combining abilities calculated within the optimal disease range for partial diallel analysis were significant. Broad-sense heritability for the same analysis and same disease range was moderate (0.329), and corresponding narrow-sense heritability was low (0.112). Broad-sense heritability from clones in the field at the same disease range was also moderate (0.333). Narrow-sense heritability from regression of half-sib progeny means onto parent means in the field and screen house was 0.183 and 0.369, respectively. Selecting tolerant clones for improvement against the disease is possible, and genetic gains are possible by using tolerant parents in breeding programs.  相似文献   
135.

Background

Growth factor receptor-bound protein 14 (Grb14) is an adapter protein implicated in receptor tyrosine kinase signaling. Grb14 knockout studies highlight both the positive and negative roles of Grb14 in receptor tyrosine kinase signaling, in a tissue specific manner. Retinal cells are post-mitotic tissue, and insulin receptor (IR) activation is essential for retinal neuron survival. Retinal cells express protein tyrosine phosphatase-1B (PTP1B), which dephosphorylates IR and Grb14, a pseudosubstrate inhibitor of IR. This project asks the following major question: in retinal neurons, how does the IR overcome inactivation by PTP1B and Grb14?

Results

Our previous studies suggest that ablation of Grb14 results in decreased IR activation, due to increased PTP1B activity. Our research propounds that phosphorylation in the BPS region of Grb14 inhibits PTP1B activity, thereby promoting IR activation. We propose a model in which phosphorylation of the BPS region of Grb14 is the key element in promoting IR activation, and failure to undergo phosphorylation on Grb14 leads to both PTP1B and Grb14 exerting their negative roles in IR. Consistent with this hypothesis, we found decreased phosphorylation of Grb14 in diabetic type 1 Ins2Akita mouse retinas. Decreased retinal IR activation has previously been reported in this mouse line.

Conclusions

Our results suggest that phosphorylation status of the BPS region of Grb14 determines the positive or negative role it will play in IR signaling.
  相似文献   
136.
Toto bodies are eosinophilic structures that resemble the cells of the superficial cell layer of the oral epithelium. Toto bodies commonly are associated with inflammatory gingival and other mucosal lesions including pyogenic granuloma, irritational fibroma, epulis fissuratum, peripheral giant cell granuloma and inflammatory hyperplastic gingivitis. We evaluated staining characteristics of Toto bodies to establish their origin and to identify their significance in lesions. We investigated pyogenic granuloma, fibroma and leukoplakia with epithelium that exhibited Toto bodies after hematoxylin and eosin (staining. Sections were stained with Alcian blue, periodic acid-Schiff and Ayoub-Shklar stains to evaluate staining intensity and distribution. More Toto bodies were found in pyogenic granuloma than in fibroma and leukoplakia. PAS and Alcian blue staining exhibited mild intensity and did not establish the origin of Toto bodies. High staining intensity and diffuse distribution of stain was observed using Ayoub-Shklar staining, which indicated that Toto bodies originate from keratin.  相似文献   
137.
A quantitative structure-activity relationship (QSAR) study is made on the inhibition of a few isozymes of carbonic anhydrase (CA) and some matrix metalloproteinases (MMPs), both zinc containing families of enzymes, by sulfonylated amino acid hydroxamates. For both enzymes, the inhibition potency of the hydroxamates is found to be well correlated with Kier's first-order valence molecular connectivity index 1χv of the molecule and electrotopological state indices of some atoms. From the results, it is suggested that while hydroxamate-CA binding may involve mostly polar interactions, hydroxamate-MMP and hydroxamate-ChC (ChC: Clostridium histolyticum collagenase, another zinc enzyme related to MMPs) bindings may involve some hydrophobic interactions. Both MMPs and ChC also possess some electronic sites of exactly opposite nature to the corresponding sites in CAs. A group such as C 6 F 5 present in the sulfonyl moiety is shown to be advantageous in both CA and MMP (also ChC) inhibitions, which is supposed to be due to the interaction of this group with Zn 2+ ion present in the catalytic site of both families of enzymes.  相似文献   
138.
Cholera toxin (CT) travels as an intact AB(5) protein toxin from the cell surface to the endoplasmic reticulum (ER) of an intoxicated cell. In the ER, the catalytic A1 subunit dissociates from the rest of the toxin. Translocation of CTA1 from the ER to the cytosol is then facilitated by the quality control mechanism of ER-associated degradation (ERAD). Thermal instability in the isolated CTA1 subunit generates an unfolded toxin conformation that acts as the trigger for ERAD-mediated translocation to the cytosol. In this work, we show by circular dichroism and fluorescence spectroscopy that exposure to 4-phenylbutyric acid (PBA) inhibited the thermal unfolding of CTA1. This, in turn, blocked the ER-to-cytosol export of CTA1 and productive intoxication of either cultured cells or rat ileal loops. In cell culture studies PBA did not affect CT trafficking to the ER, CTA1 dissociation from the holotoxin, or functioning of the ERAD system. PBA is currently used as a therapeutic agent to treat urea cycle disorders. Our data suggest PBA could also be used in a new application to prevent or possibly treat cholera.  相似文献   
139.
Apolipoprotein-derived peptides are promising candidates for the treatment of various inflammatory conditions and the main mechanism proposed for the protective action of these peptides includes binding to pro-inflammatory lipid mediators with high affinity and facilitating their sequestration/metabolism/clearance in the body. Molecules that act as pro-inflammatory lipid mediators differ considerably in their molecular structures, chemical compositions and physicochemical properties. Importance of the properties of pro-inflammatory lipid mediators on the biological activity of apolipoprotein-derived peptides has not been studied in detail. In this study, we characterized the physicochemical properties of aggregates containing lyso-PAF, acetyl-PAF and butanoyl-PAF, three closely related pro-inflammatory lipid mediators, and studied their interaction with peptides derived from the C-terminal domains of human apolipoprotein E. These PAF-analogs differ only in the chemical composition of the functional groups they carry at the sn-2 positions. Our results show that physicochemical properties of aggregates containing lyso-PAF, acetyl-PAF and butanoyl-PAF differ considerably and affect their apolipoprotein-derived peptides-binding capacity.  相似文献   
140.
The cell cycle is a ubiquitous, multi-step process that is essential for growth and proliferation of cells. The role of membrane lipids in cell cycle regulation is not explored well, although a large number of cytoplasmic and nuclear regulators have been identified. We focus in this work on the role of membrane cholesterol in cell cycle regulation. In particular, we have explored the stringency of the requirement of cholesterol in the regulation of cell cycle progression. For this purpose, we utilized distal and proximal inhibitors of cholesterol biosynthesis, and monitored their effect on cell cycle progression. We show that cholesterol content increases in S phase and inhibition of cholesterol biosynthesis results in cell cycle arrest in G1 phase under certain conditions. Interestingly, G1 arrest mediated by cholesterol biosynthesis inhibitors could be reversed upon metabolic replenishment of cholesterol. Importantly, our results show that the requirement of cholesterol for G1 to S transition is absolute, and even immediate biosynthetic precursors of cholesterol, differing with cholesterol merely in a double bond, could not replace cholesterol for reversing the cell cycle arrest. These results are useful in the context of diseases, such as cancer and Alzheimer’s disease, that are associated with impaired cholesterol biosynthesis and homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号