首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   13篇
  194篇
  2023年   1篇
  2022年   3篇
  2021年   11篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   6篇
  2015年   11篇
  2014年   5篇
  2013年   12篇
  2012年   16篇
  2011年   19篇
  2010年   5篇
  2009年   5篇
  2008年   11篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   5篇
  2003年   9篇
  2002年   6篇
  2001年   5篇
  2000年   3篇
  1999年   4篇
  1998年   2篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1987年   3篇
  1983年   1篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1972年   1篇
  1959年   1篇
排序方式: 共有194条查询结果,搜索用时 15 毫秒
81.
82.
Skinfold thickness, body weight, body water, anthropometric measurements and segment volumes were determined in 28 young and healthy Indian soldiers on return to Delhi (200 m) after staying for more than 24 months at high altitude (3500 m). The measurements were made on the 2nd day and after 3 weeks. Ten subjects were then randomly selected from this group and returned by air to the high-altitude station, and the measurements were repeated on the 3rd and 12th day of their reinduction. Though body weight and total body water increased marginally on transfer to the lower altitude, body density remained more or less unchanged. There were significant increases in the thickness of skinfolds, even when body density had increased. During this period hand and foot volumes decreased significantly. Despite significant increases in thoracic skinfold thickness, the torso volume decreased slightly. On returning to high altitude, the soldiers lost body weight, were hypohydrated and showed reduced skinfold thickness. Fat losses calculated on the basis of reduction in skinfold thickness were far in excess of those calculated from losses in body weight and in total body water. As the reduced skinfold thickness was unrelated to changes in body water content at high altitude, it seems that such reductions are due to redistribution of blood in the skin. From the results of these investigations it is concluded that variations in skinfold thickness during acclimatisation to high altitude do not accurately represent the changes in body fat content.  相似文献   
83.

Background

Understanding the mechanisms that govern protein stability under poly-extreme conditions continues to be a major challenge. Xylanase (BSX) from Bacillus sp. NG-27, which has a TIM-barrel structure, shows optimum activity at high temperature and alkaline pH, and is resistant to denaturation by SDS and degradation by proteinase K. A comparative circular dichroism analysis was performed on native BSX and a recombinant BSX (R-BSX) with just one additional methionine resulting from the start codon. The results of this analysis revealed the role of the partially exposed N-terminus in the unfolding of BSX in response to an increase in temperature.

Methodology

We investigated the poly-extremophilicity of BSX to deduce the structural features responsible for its stability under one set of conditions, in order to gain information about its stability in other extreme conditions. To systematically address the role of the partially exposed N-terminus in BSX stability, a series of mutants was generated in which the first hydrophobic residue, valine (Val1), was either deleted or substituted with various amino acids. Each mutant was subsequently analyzed for its thermal, SDS and proteinase K stability in comparison to native BSX.

Conclusions

A single conversion of Val1 to glycine (Gly) changed R-BSX from being thermo- and alkali- stable and proteinase K and SDS resistant, to being thermolabile and proteinase K-, alkali- and SDS- sensitive. This result provided insight into the structure-function relationships of BSX under poly-extreme conditions. Molecular, biochemical and structural data revealed that the poly-extremophilicity of BSX is governed by a partially exposed N-terminus through hydrophobic interactions. Such hitherto unidentified N-terminal hydrophobic interactions may play a similar role in other proteins, especially those with TIM-barrel structures. The results of the present study are therefore of major significance for protein folding and protein engineering.  相似文献   
84.
85.
We reported that NAD+-dependent SIRT1, RELB, and SIRT6 nuclear proteins in monocytes regulate a switch from the glycolysis-dependent acute inflammatory response to fatty acid oxidation-dependent sepsis adaptation. We also found that disrupting SIRT1 activity during adaptation restores immunometabolic homeostasis and rescues septic mice from death. Here, we show that nuclear SIRT1 guides RELB to differentially induce SIRT3 expression and also increases mitochondrial biogenesis, which alters bioenergetics during sepsis adaptation. We constructed this concept using TLR4-stimulated THP1 human promonocytes, a model that mimics the initiation and adaptation stages of sepsis. Following increased expression, mitochondrial SIRT3 deacetylase activates the rate-limiting tricarboxylic acid cycle (TCA) isocitrate dehydrogenase 2 and superoxide dismutase 2, concomitant with increases in citrate synthase activity. Mitochondrial oxygen consumption rate increases early and decreases during adaptation, parallel with modifications to membrane depolarization, ATP generation, and production of mitochondrial superoxide and whole cell hydrogen peroxide. Evidence of SIRT1-RELB induction of mitochondrial biogenesis included increases in mitochondrial mass, mitochondrial-to-nuclear DNA ratios, and both nuclear and mitochondrial encoded proteins. We confirmed the SIRT-RELB-SIRT3 adaptation link to mitochondrial bioenergetics in both TLR4-stimulated normal and sepsis-adapted human blood monocytes and mouse splenocytes. We also found that SIRT1 inhibition ex vivo reversed the sepsis-induced changes in bioenergetics.  相似文献   
86.
Glycoconjugate Journal - Glycosaminoglycans (GAGs) are bioactive polysaccharides or glycoconjugates found in the fish waste having significant health impacts. In the present study it has been...  相似文献   
87.
Highlights? Mice with lipoprotein lipase deficiency in neurons (NEXLPL) are obese ? NEXLPL mice develop obesity by modifying both food intake and energy expenditure ? NEXLPL mice have increases in hypothalamic AgRP/NPY gene expression before obesity ? NEXLPL mice demonstrate deficiencies in n-3 fatty acids in the hypothalamus  相似文献   
88.
89.
A peripheral membrane protease was purified from mitochondria of rat submaxillary gland. On non-denaturing PAGE the purified enzyme showed a single protein band with the enzyme activity. It yielded two protein bands with molecular weights of 39 KDa and 20 KDa on SDS-PAGE, indicating that the enzyme is composed of two protein components. The enzyme activity was strongly inhibited by SBTI, aprotinin and benzamidine. PMSF, TLCK and EDTA did not produce inhibition. The enzyme could hydrolyze different synthetic substrates having arginine at the P1 position with highest affinity for the substrate Bz-Phe-Val-Arg-p-nitroanilide was noted. The enzyme showed significant activation of chymotrypsinogen A.  相似文献   
90.
Adipose tissue expresses components of the renin-angiotensin system (RAS). Angiotensin converting enzyme (ACE2), a new component of the RAS, catabolizes the vasoconstrictor peptide ANG II to form the vasodilator angiotensin 1-7 [ANG-(1-7)]. We examined whether adipocytes express ACE2 and its regulation by manipulation of the RAS and by high-fat (HF) feeding. ACE2 mRNA expression increased (threefold) during differentiation of 3T3-L1 adipocytes and was not regulated by manipulation of the RAS. Male C57BL/6 mice were fed low- (LF) or high-fat (HF) diets for 1 wk or 4 mo. At 1 wk of HF feeding, adipose expression of angiotensinogen (twofold) and ACE2 (threefold) increased, but systemic angiotensin peptide concentrations and blood pressure were not altered. At 4 mo of HF feeding, adipose mRNA expression of angiotensinogen (twofold) and ACE2 (threefold) continued to be elevated, and liver angiotensinogen expression increased (twofold). However, adipose tissue from HF mice did not exhibit elevated ACE2 protein or activity. Increased expression of ADAM17, a protease responsible for ACE2 shedding, coincided with reductions in ACE2 activity in 3T3-L1 adipocytes, and an ADAM17 inhibitor decreased media ACE2 activity. Moreover, ADAM17 mRNA expression was increased in adipose tissue from 4-mo HF-fed mice, and plasma ACE2 activity increased. However, HF mice exhibited marked increases in plasma angiotensin peptide concentrations (LF: 2,141 +/- 253; HF: 6,829 +/- 1,075 pg/ml) and elevated blood pressure. These results demonstrate that adipocytes express ACE2 that is dysregulated in HF-fed mice with elevated blood pressure compared with LF controls.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号