首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   14篇
  2017年   1篇
  2016年   2篇
  2014年   1篇
  2013年   3篇
  2012年   6篇
  2011年   6篇
  2010年   3篇
  2009年   2篇
  2008年   7篇
  2007年   5篇
  2006年   5篇
  2005年   6篇
  2004年   7篇
  2003年   6篇
  2002年   3篇
  2001年   10篇
  2000年   10篇
  1999年   6篇
  1998年   4篇
  1997年   6篇
  1996年   7篇
  1995年   2篇
  1994年   3篇
  1993年   5篇
  1992年   7篇
  1991年   5篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1973年   2篇
  1967年   1篇
排序方式: 共有159条查询结果,搜索用时 15 毫秒
21.
Building protein interaction maps for Down's syndrome.   总被引:4,自引:0,他引:4  
Now that the complete sequences for human chromosome 21 and the orthologous mouse genomic regions are known, reasonably complete, conserved, protein-coding gene catalogues are also available. The central issue now facing Down's syndrome researchers is the correlation of increased expression of specific, normal, chromosome 21 genes with the development of specific deficits in learning and memory. Because of the number of candidate genes involved, the number of alternative splice variants of individual genes and the number of pathways in which these genes function, a pathway analysis approach will be critical to success. Here, three examples, both gene specific and pathway related, that would benefit from pathway analysis are discussed: (1) the potential roles of eight chromosome 21 proteins in RNA processing pathways; (2) the chromosome 21 protein intersectin 1 and its domain composition, alternative splicing, protein interactions and functions; and (3) the interactions of ten chromosome 21 proteins with components of the mitogen-activated protein kinase and the calcineurin signalling pathways. A productive approach to developing gene-phenotype correlations in Down's syndrome will make use of known and predicted functions and interactions of chromosome 21 genes to predict pathways that may be perturbed by their increased levels of expression. Investigations may then be targeted in animal models to specific interactions, intermediate steps or end-points of such pathways and the downstream - perhaps amplified - consequences of gene dosage directly assessed. Once pathway perturbations have been identified, the potential for rational design of therapeutics becomes practical.  相似文献   
22.
Human thymidylate synthase has been crystallized in the absence of ligands and diffracts beyond 3.0 A. The protein was cloned and expressed in Escherichia coli and then crystallized from ammonium sulfate in the presence of beta-mercaptoethanol at a variety of pH values. The crystals are trigonal in the space-group P3(1)21; the unit cell dimensions are a = b = 96.7 A, c = 84.1 A.  相似文献   
23.
24.
25.
26.
27.
In order to study base pairing properties of the amide group in DNA duplexes, a nucleoside analog, 1-(2'-deoxy-beta-D-ribofuranosyl)pyrrole-3-carboxamide, was synthesized by a new route from the ester, methyl 1-(2'-deoxy-3',5'-di-O-p -toluoyl-beta-D-erythro-pentofuranosyl)pyrrole-3-carboxylate, obtained from the coupling reaction between 1-chloro-2-deoxy-3,5-di-O -toluoyl-d-erythropentofuranose and methyl pyrrole-3-carboxylate by treatment with dimethylaluminum amide. 1-(2'-Deoxy-beta-D-ribofuranosyl)pyrrole-3-carboxamide was incorporated into a series of oligodeoxyribonucleotides by solid-phase phosphoramidite technology. The corresponding oligodeoxyribonucleotides with 3-nitropyrrole in the same position in the sequence were synthesized for UV comparison of helix-coil transitions. The thermal melting studies indicate that pyrrole-3-carboxamide, which could conceptually adopt either a dA-like or a dI-like hydrogen bond conformation, pairs with significantly higher affinity to T than to dC. Pyrrole-3-carboxamide further resembles dA in the relative order of its base pairing preferences (T >dG >dA >dC). Theoretical calculations on the model compound N-methylpyrrole-3-carboxamide using density functional theory show little difference in the preference for a syntau versus anti conformation about the bond from pyrrole C3 to the amide carbonyl. The amide groups in both the minimized antitau and syntau conformations are twisted out of the plane of the pyrrole ring by 6-14 degrees. This twist may be one source of destabilization when the amide group is placed in the helix. Another contribution to the difference in stability between the base pairs of pyrrole-3-carboxamide with T and pyrrole-3-carboxamide with C may be the presence of a hydrogen bond in the former involving an acidic proton (N3-H of T).  相似文献   
28.
Dysregulation in central nervous system (CNS) signaling that results in chronic sympathetic hyperactivity is now recognized to play a critical role in the pathogenesis of heart failure (HF) following myocardial infarction (MI). We recently demonstrated that adenovirus-mediated gene transfer of cytoplasmic superoxide dismutase (Ad-Cu/ZnSOD) to forebrain circumventricular organs, unique sensory structures that lack a blood-brain barrier and link peripheral blood-borne signals to central nervous system cardiovascular circuits, inhibits both the MI-induced activation of these central signaling pathways and the accompanying sympathoexcitation. Here, we tested the hypothesis that this forebrain-targeted reduction in oxidative stress translates into amelioration of the post-MI decline in myocardial function and increase in mortality. Adult C57BL/6 mice underwent left coronary artery ligation or sham surgery along with forebrain-targeted gene transfer of Ad-Cu/ZnSOD or a control vector. The results demonstrate marked MI-induced increases in superoxide radical formation in one of these forebrain regions, the subfornical organ (SFO). Ad-Cu/ZnSOD targeted to this region abolished the increased superoxide levels and led to significantly improved myocardial function compared with control vector-treated mice. This was accompanied by diminished levels of cardiomyocyte apoptosis in the Ad-Cu/ZnSOD but not the control vector-treated group. These effects of superoxide scavenging with Ad-Cu/ZnSOD in the forebrain paralleled increased post-MI survival rates compared with controls. This suggests that oxidative stress in the SFO plays a critical role in the deterioration of cardiac function following MI and underscores the promise of CNS-targeted antioxidant therapy for the treatment of MI-induced HF.  相似文献   
29.
Hypertension alters cerebrovascular regulation and increases the brain's susceptibility to stroke and dementia. We investigated the temporal relationships between the arterial pressure (AP) elevation induced by "slow pressor" angiotensin II (ANG II) infusion, which recapitulates key features of human hypertension, and the resulting cerebrovascular dysfunction. Minipumps delivering saline or ANG II for 14 days were implanted subcutaneously in C57BL/6 mice (n = 5/group). Cerebral blood flow was assessed by laser-Doppler flowmetry in anesthetized mice equipped with a cranial window. With ANG II (600 ng · kg(-1) · min(-1)), AP started to rise after 9 days (P < 0.05 vs. saline), remained elevated at 11-17 days, and returned to baseline at 21 days (P > 0.05). ANG II attenuated the cerebral blood flow increase induced by neural activity (whisker stimulation) or endothelium-dependent vasodilators, an effect observed before the AP elevation (7 days), as well as after the hypertension subsided (21 days). Nonpressor doses of ANG II (200 ng · kg(-1) · min(-1)) induced cerebrovascular dysfunction and oxidative stress without elevating AP (P > 0.05 vs. saline), whereas phenylephrine elevated AP without inducing cerebrovascular effects. ANG II (600 ng · kg(-1) · min(-1)) augmented neocortical reactive oxygen species (ROS) with a time course similar to that of the cerebrovascular dysfunction. Neocortical application of the ROS scavenger manganic(I-II)meso-tetrakis(4-benzoic acid)porphyrin or the NADPH oxidase peptide inhibitor gp91ds-tat attenuated ROS and cerebrovascular dysfunction. We conclude that the alterations in neurovascular regulation induced by slow pressor ANG II develop before hypertension and persist beyond AP normalization but are not permanent. The findings unveil a striking susceptibility of cerebrovascular function to the deleterious effects of ANG II and raise the possibility that cerebrovascular dysregulation precedes the elevation in AP also in patients with ANG II-dependent hypertension.  相似文献   
30.
We have combined equilibrium and steered molecular dynamics (SMD) simulations with principal component and correlation analyses to probe the mechanism of allosteric regulation in imidazole glycerol phosphate (IGP) synthase. An evolutionary analysis of IGP synthase revealed a conserved network of interactions leading from the effector binding site to the glutaminase active site, forming conserved communication pathways between the remote active sites. SMD simulations of the undocking of the ribonucleotide effector N1-[(5'-phosphoribulosyl)-formino]-5'-aminoimidazole carboxamide ribonucleotide (PRFAR) resulted in a large scale hinge-opening motion at the interface. Principal component analysis and a correlation analysis of the equilibration protein motion indicate that the dynamics involved in the allosteric transition are mediated by coupled motion between sites that are more than 25 A apart. Furthermore, conserved residues at the substrate-binding site, within the barrel, and at the interface were found to exhibit highly correlated motion during the allosteric transition. The coupled motion between PRFAR unbinding and the directed opening of the interface is interpreted in combination with kinetic assays for the wild-type and mutant systems to develop a model of allosteric regulation in IGP synthase that is monitored and investigated with atomic resolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号