首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227篇
  免费   9篇
  236篇
  2016年   2篇
  2014年   4篇
  2013年   6篇
  2012年   8篇
  2011年   9篇
  2010年   13篇
  2009年   11篇
  2008年   12篇
  2007年   10篇
  2006年   8篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   8篇
  1998年   8篇
  1997年   3篇
  1996年   6篇
  1995年   8篇
  1994年   6篇
  1993年   5篇
  1992年   7篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   5篇
  1985年   3篇
  1982年   2篇
  1979年   4篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1965年   1篇
  1958年   4篇
  1957年   6篇
  1956年   4篇
  1955年   5篇
  1954年   4篇
  1953年   4篇
  1952年   2篇
  1951年   2篇
  1950年   8篇
  1948年   2篇
排序方式: 共有236条查询结果,搜索用时 0 毫秒
71.
1. Recent studies have demonstrated that there is generally no unambiguous relationship between plant species composition and specific environmental conditions in rivers. Nevertheless, indices of environmental pressures based on macrophytes are flourishing, because of the requirements of the Water Framework Directive (WFD). 2. We first reviewed nine such indices against 13 criteria for bioindicators. Then, using data from France and England, we tested whether the IBMR (Macrophyte Biological Index for Rivers) and LEAFPACS (predictions and classification system for macrophytes) methods could reliably indicate nutrient and hydromorphological pressures. Finally, we used an improved bootstrapping method to estimate accuracy. 3. Currently, most indices lack ecological meaning for a variety of reasons, including partial sampling (backwaters are excluded); reliance on list of taxa (there are identification difficulties) rather than structure and functions; correlation rather than causation; application within a limited biogeographical area; reliance on ‘expert’ judgement; high precision but poor accuracy; poorly defined reference conditions; lack of independent tests; and an inability to discriminate reliably between the target pressures of interest from confounding background variables. 4. IBMR was a far better indicator of pH (or HCO3pCO2) than it was of soluble reactive phosphorus, SRP (or SRP‐NH4). While there was a highly significant correlation between IBMR and SRP after removing the effect of pH, the relationship was weak (r2 = 0.08, n = 215, P < 0.001). 5. LEAFPACS is a multi‐metric method summing up five individual indices, each compliant with the WFD. Its individual metrics were not better correlated with nutrient and hydromorphological pressures (with r2 < 0.1, n = 62, P < 0.05) than was the IBMR. The meaning of the overall metric is questionable. 6. There are problems in determining the precision of the indices, owing to uncertainties in recording, but they are less than the uncertainties in determining accuracy (because species optima and tolerances are sometimes poorly known). 7. Reliable information is needed to improve the state of our rivers. Macrophyte indices are able to detect statistically significant pressures from a large population of sites but cannot be applied at specific sites, as required by the WFD, owing to large uncertainties and low explanatory power. Typically, more than 90% of the variability in macrophyte indices is attributed to factors other than human pressure. The WFD would be better served by a simpler, holistic approach based on our current mechanistic understanding of river processes. These findings are likely to apply also to other taxonomic groups (macroinvertebrates, diatoms, fish) used in the assessment of purported ecological quality and to palaeolimnological measures of reference status.  相似文献   
72.
We examined the levels of pollen-host specificity in North American Diadasia (Hymenoptera: Apoidea), a clade of specialist bees. We analysed the scopal pollen loads of 409 individuals representing 25 of the 30 species of Diadasia that occur in North America. Each Diadasia species showed a preference for one of five plant families. However, the 25 species varied in their level of host specificity: the average percentage by volume of the preferred host in pollen loads ranged from > 99% to < 75%. In 17 of the 25 species, all or most individuals examined contained pure loads of one host taxon, while in eight species individuals were less specialized and carried mixtures of several unrelated host taxa. Mapping these host preferences onto a phylogenetic tree indicated that Malvaceae is the most likely ancestral host for the genus, and use of other hosts can be explained by a single switch to each of the other four host-plant families. Thus, most speciation events were not associated with a host switch; this pattern does not support host switching as a niche partitioning strategy to avoid competition. Diadasia species are more likely to use host-plant families that are used by other Diadasia and Emphorine bees; however, there was no evidence of residual adaptation to ancestral hosts. Diet breadth appears to be a labile trait: transitions from narrower to broader host use, as well as vice versa, were observed. The observed patterns of host-use evolution may be driven, in part, by host morphology and/or chemistry.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 487–505.  相似文献   
73.
Abstract.  1. Responses of biota to climate change have been well documented for a restricted number of taxa. This study examined shifts in phenology of 37 species of the aquatic insect order Odonata in the Netherlands over the last decade.
2. The present study shows that adults of the Dutch dragonflies and damselflies have advanced their flight dates over recent years due to complex effects of changing temperature regimes on the timing of adult flight dates.
3. Flight dates did not respond to changes in autumn/winter temperatures, advanced with increases in spring temperatures of the focal and previous year, and delayed with increases in summer temperatures of the previous year. Climate change consequently advanced the flight dates of the Odonata because only spring temperatures have increased during the study period.
4. The findings imply that climate change can evoke strong phenological responses in aquatic insects. Moreover, shifts in phenology due to climate change are likely to vary both spatially or temporally, depending on the exact nature of climate change.  相似文献   
74.
The orientation of plant root growth is modulated by developmental as well as environmental cues. Among the environmental factors, gravity has been extensively studied because of its overpowering effects in modulating root growth direction. However, our knowledge of the effects of other abiotic signals that influence root growth direction is largely unknown. Recently, we have shown that high salinity can modify root growth direction by inducing rapid amyloplast degradation in root columella cells of Arabidopsis thaliana. By exploiting salt overly sensitive (sos) mutants and PIN2 expression analyses, we have shown that the altered root growth direction in response to salt is mediated by ion disequilibrium and is correlated with PIN2 mRNA abundance and expression and localization of the protein. Our study demonstrates that the SOS pathway may mediate this process. Here we discuss our data from broader perspectives. We propose that salt-induced modification of root growth direction is a salt-avoidance behavior, which is an active adaptive mechanism for plants grown under saline conditions. Furthermore, high salinity also stimulates alteration of gravitropic growth of shoots. These findings illustrate that plants have a fine and sophisticated sensory and communication system that enable plants to dynamically and efficiently cope with rapidly changing environment.Key words: abidopsis, adaptation, avoidance, root, salt stress, tropic growthOwing to their sessile nature, plant roots are constantly bombarded with various environmental stimuli from the soil, such as gravity, physical obstacles and imbalanced distribution of water and/or nutrients and high salinity. Where to grow is an important developmental decision in the life cycle of a plant that is crucial for its adaptation and the subsequent reproductive success. The proper orientation of root growth is shaped by both the developmental inputs and external signals.1,2 The overwhelming environmental factor that modulates root growth direction is gravity, and plant primary roots grow downward toward the gravity vector. This directed growth of root in response to gravity is named as tropic growth to gravity or gravitropism. Studies of gravity perception and signaling pathway of the root cap at the primary root of Arabidopsis strongly support the starch statolith hypothesis.3 In this hypothesis, the columella cells in the root cap, which contain sedimentable amyloplasts, are the gravity-perceptive site in roots. The inner columella cells of the second tier have been proposed as making the greatest contribution to root gravitropism.4 Upon gravity stimulation, cytosolic ions such as Ca2+ and rapid cytoplasmic alkalization may be involved in gravity signal transduction.57 Asymmetric distribution of auxin in roots caused by basipetal transport mainly through the auxin efflux carrier PIN-FORMED2 (PIN2), which is distributed asymmetrically within the cells, results in gravitropic root response of the root elongation zone.8,9In contrast to our understanding of gravitropism of root, our knowledge of tropistic responses of root to other major environmental stimuli, such as water availability, imbalanced nutrient distribution and high salinity, and the interplay between these stimuli in determining the directional growth of root remains enigmatic. Recent studies have confirmed the existence of hydrotropism and the molecular genetic basis of the tropistic growth of root to water in determining the final direction of root growth starts to be deciphered.1012 Hydrotropic growth of roots is an important trait for plants to actively find water and to optimize their fitness under drought condition. Salinity is another major constraint to root system development, and limits the productivity of agricultural crops and the distribution of plant species.1315 It is known that salt stress-induced disturbed balance of ions is the primary cause for inhibition of plant growth and subsequent yield reduction. How does root minimize entrance of harmful ions and subsequently avoid salt injury? Does plant have capacity to sense salt signal, and prevent potentially harmful ions reaching root and shoot?Previous studies have shown that plant use different strategies to avoid salt injury at various levels. After Na+ enters the root cells, the Casparian strip can restrict the movements of the harmful ion into the xylem.16 Root cells also avoid salt injury by extruding Na+ actively back to the outside solution. This energy-dependent ion efflux from cytosol across the plasma membrane is mediated by SOS1 gene, a Na+-H+ antiporter, which is regulated by at least other genes, SOS3 (calcium binding protein) and SOS2 (serine/threonine kinase). This is the well characterized SOS (Salt Overly Sensitive) signaling pathway.17,18 Another way for plant root cells to avoid ion injury is to accumulate Na+ into vacuole. Vacuolar compartmentation of Na+ is also in part regulated by Na+-H+ antiporters, such as AtNHX1.19 These findings reveal mechanisms of how plants avoid Na+ injury after passive entrance of sodium ions into root cells. We questioned whether a plant is capable of actively preventing the harmful ions from reaching root cells or escape from high salinity in the environment, and how plant roots respond to changing salt conditions, because salt distribution is unbalanced under natural saline conditions, especially after rain and irrigation. With a new assay that allows us to specifically address how plant roots respond to changing salt levels, we discovered an alternative adaptive mechanism for plant root to avoid salt injury.20We set up a two-layer medium assay in which a sodium ion gradient would be generated. A normal nutrient agar medium is at the top of the growth bottle and an agar with salt-stressed medium is in the bottom of the bottle. This simple assay allows us to monitor root growth and orientation. The roots of the wild type seedlings penetrated the interface of the layers and grew straight downwards exhibiting gravitropism, when both layers were MS media. In contrast, when the bottom medium contained NaCl, roots of seedlings grew downward first, and then curved and grew upward toward the lower levels of salt. Roots started to bend upward at an early stage even before contacting high-salt medium (250 mM NaCl) on the bottom. The results indicate that roots can sense ion gradients in the growing environment and transduce the signal, combine with internal signals to make decisions that enable roots to stay away from high salt.21,22 Here, we would like to propose this salt-induced tropic growth as a salt-avoidance tropism, which is an important adaptive behavior for plant roots to avoid salt injury and direct them toward their goal of optimal fitness.23 Because salt stress inhibits root elongation, we tested impact of salt-induced negative gravitropism on the root growth. The results showed that inhibitory effect of salt on root growth was largely alleviated with this tropic curve (Fig. 1), further verifying our hypothesis that the salt-induced developmental plasticity is a salt-avoidance behavior (Fig. 2).Open in a separate windowFigure 1Effects of salt on root elongation of Arabidopsis thaliana seedlings from different salt treatments. The inhibitory effect of salt stress on root growth was greatly alleviated in the wild type (Col-0) when root growth of the seedlings was analyzed using a two-layer medium assay (black bars). The MS nutrient medium is on the top, and NaCl concentrations in the media on the bottom are 0, 150 and 250 mM. More severe inhibition of root growth of the seedlings by various levels of NaCl in a root bending assay (white bars) was observed. Data represents means of measurements from >40 individuals from three independent experiments. Bars represent standard error.Open in a separate windowFigure 2An illustrative model of the sensing and response by the plant root when grown under different saline conditions. This model proposes two major mechanisms of salt responses by plants, where salt tolerance is the ability to function while stressed; Salt avoidance is the capacity to stay away from salt stress when growing in changing saline conditions.Another important point that we would like to bring out based on our observation in this work is that salinity also stimulated shoot positive gravitropism or negative phototropism. The observation implicates long-distance communication from root to shoot during plant salt response in the stressed plants. The exact biological function of shoot tropic growth, the signals in this long-distance communication, and underlying molecular mechanism still remains unknown.In conclusion, our study has revealed a novel complex adaptive mechanism that provides plants a capacity for avoiding injury from salt. The hypothesis we have proposed here should provide novel insights into plant stress avoidance. Further analysis using a combinatorial approach, mutant analysis and genomics, is required to decipher the molecular network underlying this salt-avoidance behavior.  相似文献   
75.
1. Little is known about the predators of insect eggs in fresh waters. This study describes aspects of the life history of a scathophagid fly (Acanthocnema sp.), whose larvae are predators of aquatic insect eggs. 2. Because the Acanthocnema predator oviposits its eggs on the surface of aquatic insect egg masses, all insect egg masses were collected regularly within a 200‐m reach of Redwood Creek (California, U.S.A.) between September 2003 and June 2007. Acanthocnema predators were found predominantly within egg masses of the caddifly Neophylax rickeri (Trichoptera: Uenoidae). 3. There was a mean of 0.25 Acanthocnema individuals per N. rickeri egg mass (n = 2367 egg masses). In general, N. rickeri egg masses were more commonly found clustered in aggregations (93.7%) than singly (6.3%), and Acanthonema were found more often within the aggregations of N. rickeri (98.7%) compared to singly laid egg masses (1.3%). 4. The duration of the Acanthocnema predator life stages was: egg 2.9 ± 0.8 (mean ± SD) days, larva 15.6 ± 10.2 days, pupa 80.3 ± 24.9 days and adult 7.2 ± 4.8 days. The short duration of the Acanthocnema egg stage (1–7 days) compared to that of its prey N. rickeri (2–4 weeks) raises the probability that the undeveloped eggs of N. rickeri would be available to the young predators upon hatching. Egg consumption of N. rickeri eggs by Acanthocnema averaged 262.6 eggs per larval period. 5. Acanthocnema had a bivoltine life cycle in which the first generation fed exclusively on N. rickeri egg masses in the winter and the second generation fed on the egg masses of several species, including other Trichoptera (Brachycentridae) and Diptera (Ceratopogonidae, Chironomidae) in the spring. These findings suggest differing feeding strategies by the first and second generations of Acanthocnema in response to the seasonal availability of prey species. This type of autecological information is important for understanding mechanisms of community interactions.  相似文献   
76.
Animal models that represent human diseases constitute an important tool in understanding the pathogenesis of the diseases, and in developing effective therapies. Neurodegenerative diseases are complex disorders involving neuropathologic and psychiatric alterations. Although transgenic and knock-in mouse models of Alzheimer's disease, (AD), Parkinson's disease (PD) and Huntington's disease (HD) have been created, limited representation in clinical aspects has been recognized and the rodent models lack true neurodegeneration. Chemical induction of HD and PD in nonhuman primates (NHP) has been reported, however, the role of intrinsic genetic factors in the development of the diseases is indeterminable. Nonhuman primates closely parallel humans with regard to genetic, neuroanatomic, and cognitive/behavioral characteristics. Accordingly, the development of NHP models for neurodegenerative diseases holds greater promise for success in the discovery of diagnoses, treatments, and cures than approaches using other animal species. Therefore, a transgenic NHP carrying a mutant gene similar to that of patients will help to clarify our understanding of disease onset and progression. Additionally, monitoring disease onset and development in the transgenic NHP by high resolution brain imaging technology such as MRI, and behavioral and cognitive testing can all be carried out simultaneously in the NHP but not in other animal models. Moreover, because of the similarity in motor repertoire between NHPs and humans, it will also be possible to compare the neurologic syndrome observed in the NHP model to that in patients. Understanding the correlation between genetic defects and physiologic changes (e.g. oxidative damage) will lead to a better understanding of disease progression and the development of patient treatments, medications and preventive approaches for high risk individuals. The impact of the transgenic NHP model in understanding the role which genetic disorders play in the development of efficacious interventions and medications is foreseeable.  相似文献   
77.
The liver is a target for toxic chemicals such as cadmium (Cd). When the liver is damaged, hepatic stellate cells (HSC) are activated and transformed into myofibroblast-like cells, which are responsible for liver fibrosis. Curcuma longa has been reported to exert a hepato-protective effect under various pathological conditions. We investigated the effects of C. longa administration on HSC activation in response to Cd induced hepatotoxicity. Forty adult male albino rats were divided into: group 1 (control), group 2 (Cd treated), group 3 (C. longa treated) and group 4 (Cd and C. longa treated). After 6 weeks, liver specimens were prepared for light and electron microscopy examination of histological changes and immunohistochemical localization of alpha smooth muscle actin (αSMA) as a specific marker for activated HSC. Activated HSC with a positive αSMA immune reaction were not detected in groups 1 and 3. Large numbers of activated HSC with αSMA immune reactions were observed in group 2 in addition to Cd induced hepatotoxic changes including excess collagen deposition in thickened portal triads, interlobular septa with hepatic lobulation, inflammatory cell infiltration, a significant increase in Kupffer cells and degenerated hepatocytes. In group 4, we observed a significant decrease in HSC that expressed αSMA with amelioration of the hepatotoxic changes. C. longa administration decreased HSC activation and ameliorated hepatotoxic changes caused by Cd in adult rats.  相似文献   
78.
79.
C4 grasses constitute the main component of savannas and are pervasive in other dry tropical ecosystems where they serve as the main diet for grazing animals. Among potential factors driving C4 evolution of grasses, the interaction between grasses and grazers has not been investigated. To evaluate if increased grazing pressure may have selected for higher leaf silica production as the grasses diverged, we reconstructed the phylogeny of all 800 genera of the grass family with both molecular (combined multiplastid DNA regions) and morphological characters. Using molecular clocks, we also calculated the age and number of origins of C4 clades and found that shifts from C3 to C4 photosynthesis occurred at least 12 times starting 30.9 million years ago and found evidence that the most severe drop in atmospheric carbon dioxide in the late Oligocene (between 33 and 30 million years ago) matches the first origin of C4 photosynthesis in Chloridoideae. By combining fossil and phylogenetic data for ungulates and implementing a randomization procedure, our results showed that the appearance of C4 grass clades and ungulate adaptations to C4-dominated habitats match significantly in time. An increase of leaf epidermal density of silica bodies was found to correspond to postulated shifts in diversification rates in the late Miocene [24 significant shifts in diversification ( P <0.05) were detected between 23 and 3.7 million years ago]. For aristidoid and chloridoid grasses, increased grazing pressure may have selected for a higher leaf epidermal silica production in the late Miocene.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号