首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   2篇
  国内免费   1篇
  168篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   8篇
  2014年   4篇
  2013年   6篇
  2012年   7篇
  2011年   6篇
  2010年   9篇
  2009年   7篇
  2008年   7篇
  2007年   10篇
  2006年   3篇
  2005年   7篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1988年   2篇
  1986年   2篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   3篇
  1976年   7篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1966年   1篇
排序方式: 共有168条查询结果,搜索用时 0 毫秒
161.
162.
Electrogenic and redox events in the reaction-centre complexes from Rhodopseudomonas viridis have been studied. In contrast to the previous points of view it is shown that all the four hemes of the tightly bound cytochrome c have different Em values (-60, +20, +310 and +380 mV). The first three hemes reveal alpha absorption maxima at 554 nm, 552 nm and 556 nm respectively. The 380-mV heme displays a split alpha band with a maximum at 559 nm and a shoulder at 552 nm. Such a splitting is due to non-degenerated Qx and Qy transitions in the iron-porphyrin ring as demonstrated by magnetic circular dichroism spectra. Fast kinetic measurements show that, at redox potentials when only high-potential hemes c-559 and c-556 are reduced, heme c-559 appears to be the electron donor to P-960+ (tau = 0.32 microsecond) whereas heme c-556 serves to rereduce c-559 (tau = 2.5 microsecond). Upon reduction of the third heme (c-552), the P-960+ reduction rate increases twofold (tau = 0.17 microsecond) and all photoinduced redox events within the cytochrome appear to be complete in less than 1 microsecond after the flash. The following sequence of the redox centers is tentatively suggested: c-554, c-556, c-552, c-559, P-960. To study electrogenesis, the reaction-centre complexes from Rps. viridis were incorporated into asolectin liposomes, and fast kinetics of laser flash-induced electric potential difference has been measured in proteoliposomes adsorbed on a phospholipid-impregnated film. The electrical difference induced by a single 15-ns flash was found to be as high as 100 mV. The photoelectric response has been found to involve four electrogenic stages associated with (I) QA reduction by P-960; (II) reduction of P-960+ by heme c-559; (III) reduction of c-559 by c-556 and (IV) protonation of Q2-B. The relative contributions of stages I, II, III and IV are found to be equal to 70%, 15%, 5% and 10%, respectively, of the overall electrogenic process. At the same time, the first three respective distances along the axis normal to the membrane plane covered by electrons, calculated from X-ray data of Deisenhofer et al. [J. Mol. Biol. 180, 385-398 (1984)], are 22%, 18.5% and 26%. This indicates that the efficiency of electrogenic phases depends first of all upon the value of the dielectric constant of the respective membrane regions rather than upon the distance between the redox groups involved.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
163.
Experimental evidence for electron transfer, photosensitized by bacteriochlorophyll, from cytochrome c to a pigment complex P-760 (involving bacteriopheophytin-760 and also bacteriochlorophyll-800) in the reaction centers of Chromatium minutissimum has been described. This photoreaction occurs between 77 and 293 degrees K at a redox potential of the medium between -250 and -530 mV. Photoreduction of P-760 is accompanied by development of a wide absorption band at 650 nm and of an EPR signal with g=2.0025+/-0.0005 and linewidth of 12.5+/-0.5 G, which are characteristic of the pigment radical anion. It is suggested that the photoreduction of P-760 occurs under the interaction of reduced cytochrome c with the reaction center state P+-890-P--760 which is induced by light. The existence of short-lived state P+-890-P--760 is indicated by the recombination luminescence with activation energy of 0.12 eV and t 1/2 less than or equal to 6 ns. This luminescence is exicted and emitted by bacteriochlorophyll and disappears when P-760 is reduced. At low redox potentials, the flash-induced absorbance changes related to the formation of the carotenoid triplet state with t 1/2 = 6 mus at 20 degreesC are observed. This state is not formed when P-760 is reduced at 293 and 160 degrees K. It is assumed that this state is formed from the reaction center state P+-890---760, which appears to be a primary product of light reaction in the bacterial reaction centers and which is probably identical with the state PF described in recent works.  相似文献   
164.
Recent studies of reaction centres from Rhodobacter sphaeroides (R-26), in which bacteriopheophytins a were replaced by plant pheophytins a, have shown that at low temperature the excited state of primary electron donor P* is converted to the state P+B-(A) (where B(A) is a bacteriochlorophyll a monomer in branch A) which has a long lifetime (about 600 ps [8]). This allows the direct measurement of the free energy difference between P* and P+B-(A) using the temperature dependence of the recombination fluorescence from P+B-(A). The data show that P+B-(A) is located below P* by 550+/-30 mV. Thus, the primary conversion of P* leads to the formation of P+B-(A) which is below P* in energy and is a real intermediate in electron transfer.  相似文献   
165.
166.
167.
168.
Changes in the cell-mediated responsiveness of the body under the action of different variants of B. thuringiensis have been studied in experiments on guinea pigs. The data thus obtained indicate that the development of sensitization occurs in the animals, which is manifested by the increase of the sensitivity of leukocytes to the specific allergen and by the increase of the phagocytic activity of peritoneal macrophages. The most pronounced changes in the immune responsiveness of guinea pigs have been observed after the parenteral administration of B. thuringiensis var. galleriae.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号