首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   667篇
  免费   24篇
  国内免费   1篇
  2023年   5篇
  2022年   8篇
  2021年   15篇
  2020年   9篇
  2019年   6篇
  2018年   20篇
  2017年   13篇
  2016年   11篇
  2015年   21篇
  2014年   29篇
  2013年   43篇
  2012年   40篇
  2011年   42篇
  2010年   19篇
  2009年   22篇
  2008年   42篇
  2007年   36篇
  2006年   24篇
  2005年   21篇
  2004年   18篇
  2003年   13篇
  2002年   18篇
  2001年   12篇
  2000年   14篇
  1999年   15篇
  1998年   11篇
  1997年   8篇
  1996年   3篇
  1994年   6篇
  1993年   5篇
  1992年   7篇
  1991年   3篇
  1990年   10篇
  1988年   7篇
  1987年   4篇
  1986年   10篇
  1985年   4篇
  1984年   9篇
  1982年   4篇
  1980年   5篇
  1979年   7篇
  1978年   4篇
  1977年   11篇
  1976年   4篇
  1975年   7篇
  1974年   5篇
  1973年   8篇
  1972年   7篇
  1971年   9篇
  1970年   3篇
排序方式: 共有692条查询结果,搜索用时 62 毫秒
171.
E. A. Rakha, V. Naik, Z. Chaudry, D. Baldwin and I. N. Soomro
Cytological assessment of conventional transbronchial fine needle aspiration of lymph nodes
Objectives:  Transbronchial fine needle aspiration (TBNA) is a minimally invasive bronchoscopic technique that allows pathological examination of mediastinal and hilar lymph nodes. The aim of this study was to assess the cytopathological outcome of TBNA.
Methods:  One hundred and eighty-seven patients who underwent TBNA of mediastinal and hilar lesions from May 2000 to June 2007 were reviewed.
Results:  TBNA results were considered to be adequate if the cytological material revealed a malignant lesion or sufficient number of benign lymphoid cells. In the current study, 40 cases (21.9%) were reported as inadequate. When inadequate tests were excluded, the overall sensitivity and accuracy of TBNA in the diagnosis of malignant lesions were 83.5% and 88.0% respectively. The lowest sensitivity was noted in lymph node involvement by lymphoma. Regarding the workload associated with TBNA cytology, we found that the average number of conventionally prepared cytological slides per case was high (17 slides per case).
Conclusion:  Our results confirm that conventional TBNA is a sensitive and useful technique but it is relatively expensive and the protocols should be adapted to allow appropriate material to be collected for ancillary diagnostic tests.  相似文献   
172.
Measles virus (MV) entry requires at least 2 viral proteins, the hemagglutinin (H) and fusion (F) proteins. We describe the rescue and characterization of a measles virus with a specific mutation in the stalk region of H (I98A) that is able to bind normally to cells but infects at a lower rate than the wild type due to a reduction in fusion triggering. The mutant H protein binds to F more avidly than the parent H protein does, and the corresponding virus is more sensitive to inhibition by fusion-inhibitory peptide. We show that after binding of MV to its receptor, H-F dissociation is required for productive infection.Measles virus (MV) infection requires binding of the hemagglutinin (H) protein to its cognate receptors (9, 20, 21, 29, 41) while the fusion (F) protein triggers membrane lipid mixing and fusion. The H protein is a type II transmembrane homodimeric, disulfide-linked glycoprotein (33). The F protein is a type I membrane glycoprotein that exists as a homotrimeric complex. The protein is cleaved by furin in the trans-Golgi network into a metastable heterodimer with a membrane-spanning F1 domain and a membrane-distal F2 domain (16). Expressed alone, neither H nor F leads to membrane fusion, and therefore, both proteins are required and have to interact for productive infection of a target cell (46). There is evidence that these interactions start within the endoplasmic reticulum (34).The H proteins of Paramyxoviridae family members have a globular head with a six-blade β-propellor structure that is responsible for receptor binding (4, 7, 13), a stalk region composed of alpha-helical coiled coils (18, 48) that anchors the complex to the plasma membrane, and a short cytoplasmic domain that can interact with the matrix (M) protein and modulate fusion (2). Given that the F protein does not interact with a receptor on the target cell but undergoes conformational changes to enable membrane fusion, it seems likely that the F protein must interact with the H protein that enables fusion (14, 19, 23, 24, 35, 47). The molecular interactions between the F and H proteins are being increasingly understood (6, 8, 24, 25, 30, 35, 42). Hummel and Bellini have described a mutation in the H glycoprotein where threonine replaced isoleucine 98, which led to loss of fusion in chronically infected cells, but the virus was not rescued (15). Corey and Iorio performed alanine-scanning mutagenesis to determine the role of specific, membrane-proximal residues in the stalk region of the H protein responsible for H-F interactions (6). Substitution of alanine for specific residues in this region altered cell-to-cell fusion and the strength of the H-F interaction in transient-transfection experiments (6). Replacement of isoleucine with alanine at position 98 reduced fusion but did not significantly alter hemadsorption, implying that binding of the mutant H protein to CD46 was not affected (6). More recently, Paal et al. showed that the H protein can tolerate significant additions to its alpha-helical coiled coils without loss of binding or fusion in transient-transfection assays (30). Although these studies confirm the importance of the interactions between the H protein stalk and the metastable F protein for enabling fusion after receptor binding, the exact steps leading to fusion are still unclear. Moreover, studies evaluating H-F interactions were performed with transient protein expression and not in the presence of the actual virus. This is potentially an important shortcoming since the M protein can modulate infection and fusion (1).  相似文献   
173.
Curcumin, a component of turmeric, has potent antitumor activity against several tumor types. However, its molecular target and mechanism of antiproliferative activity are not clear. Here, we identified curcumin as a novel antimicrotubule agent. We have examined the effects of curcumin on cellular microtubules and on reconstituted microtubules in vitro. Curcumin inhibited HeLa and MCF-7 cell proliferation in a concentration-dependent manner with IC(50) of 13.8 +/- 0.7 microm and 12 +/- 0.6 microm, respectively. At higher inhibitory concentrations (> 10 microm), curcumin induced significant depolymerization of interphase microtubules and mitotic spindle microtubules of HeLa and MCF-7 cells. However, at low inhibitory concentrations there were minimal effects on cellular microtubules. It disrupted microtubule assembly in vitro, reduced GTPase activity, and induced tubulin aggregation. Curcumin bound to tubulin at a single site with a dissociation constant of 2.4 +/- 0.4 microm and the binding of curcumin to tubulin induced conformational changes in tubulin. Colchicine and podophyllotoxin partly inhibited the binding of curcumin to tubulin, while vinblastine had no effect on the curcumin-tubulin interactions. The data together suggested that curcumin may inhibit cancer cells proliferation by perturbing microtubule assembly dynamics and may be used to develop efficacious curcumin analogues for cancer chemotherapy.  相似文献   
174.
AIM: Isolation and characterization of a bacterial isolate (strain FP10) from banana rhizosphere with innate potential as fungal antagonist and microbial adjuvant in micropropagation of banana. METHODS AND RESULTS: Bacterium FP10 was isolated from the banana rhizosphere and identified as Pseudomonas aeruginosa based on phenotypic, biochemical traits and sequence homology of partial 622-bp fragment of 16S ribosomal DNA (rDNA) amplicon, with the ribosomal database sequences. Strain FP10 displayed antibiosis towards fungi causing wilt and root necrosis diseases of banana. Production of plant growth hormone, indole-3-acetic acid (IAA), siderophores and phosphate-solubilizing enzyme in FP10 was determined. Strain FP10 tested negative for hydrogen cyanide, cellulase and pectinase, the deleterious traits for plant growth. Screening of antibiotic genes was carried out by polymerase chain reaction using gene-specific primers. Amplification of a 745-bp DNA fragment confirmed the presence of phlD, which is a key gene involved in the biosynthesis of 2,4-diacetylphloroglucinol (DAPG) in FP10. The antibiotic produced by FP10 was confirmed as DAPG using thin layer chromatography, high performance liquid chromatography and Fourier transform infrared and tested for fungal antibiosis towards banana pathogens. Procedures for encapsulation of banana shoot tips with FP10 are described. CONCLUSIONS: Strain FP10 exhibited broad-spectrum antibiosis towards banana fungi causing wilt and root necrosis. DAPG by FP10 induced bulb formation and lysis of fungal mycelia. Encapsulation of banana shoot tips with FP10 induced higher frequency of germination (plantlet development) than nontreated controls on Murashige and Skoog basal medium. Treatment of banana plants with FP10 enhanced plant height and reduced the vascular discolouration as a result of Fusarium oxysporum f. sp. cubense FOC. SIGNIFICANCE AND IMPACT OF THE STUDY: Because of the innate potential of fungal antibiosis by DAPG antibiotic and production of siderophore, plant-growth-promoting IAA and phosphatase, the strain FP10 can be used as biofertilizer as well as a biocontrol agent.  相似文献   
175.
AIMS: To assess genotypic diversity within Ralstonia solanacearum isolates of a single field. METHODS AND RESULTS: A total of 44 field isolates and 22 in vitro generated clones of R. solanacearum were studied for genotypic diversity by random amplified polymorphic DNA (RAPD) technique. Genomic DNA of these isolates and clones was extracted by proteinase-K-SDS lysis mini-prep method. RAPD analysis was done with 30 decamer primers. The data were analysed using NTSYSpc 2.02h software. Forty-two out of 44 field isolates and all the clonal isolates were identified as distinct genotypes at 70% similarity level. CONCLUSION: Very high level of genome variability was observed within the field and clonal isolates of R. solanacearum. This might be a reason for the wide host range of this bacterium and for quick breakdown of wilt resistance in host plants. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that it would be difficult to design specific diagnostic protocol for R. solanacearum even for a localized population and to breed cultivars with broad-spectrum resistance.  相似文献   
176.
High-frequencyin vitro flowering is reported here fromin vitro regenerated shoots ofin vitro-raised seedlings of rare and endemicCeropegia lawii, Ceropegia maccannii, Ceropegia oculata, andCeropegia sahyadrica, as well as the widely distributedCeropegia bulbosa var.bulbosa andCeropegia hirsuta. In our first set of experiments, the MS medium contained 87 mM sucrose and was supplemented with varying concentrations of BAP (4.4 to 26.6 μM). For the second set of trials, varying concentrations of sucrose (87 to 233 mM) were tested in MS media containing a constant 4.4 p.M BAP. Sub-cultured apical as well as axillary buds flowered with similar frequencies after 30 d of incubation. For all six species, the highest percentage of flowering shoots was obtained with either 26.6 μM BAP or 175 mM sucrose. Although smaller in size, theirin vitro flowers were morphologically comparable within wVo-derived flowers. Variations among species were noted for the number of flower buds per shoot and the percentage of flower formation. Because all six species showed similar responses in both experiments, we can suggest that this protocol is applicable across the wide range ofCeropegia species.  相似文献   
177.
Saleh L  Krebs C  Ley BA  Naik S  Huynh BH  Bollinger JM 《Biochemistry》2004,43(20):5953-5964
A key step in generation of the catalytically essential tyrosyl radical (Y122(*)) in protein R2 of Escherichia coli ribonucleotide reductase is electron transfer (ET) from the near-surface residue, tryptophan 48 (W48), to a (Fe(2)O(2))(4+) complex formed by addition of O(2) to the carboxylate-bridged diiron(II) cluster. Because this step is rapid, the (Fe(2)O(2))(4+) complex does not accumulate and, therefore, has not been characterized. The product of the ET step is a "diradical" intermediate state containing the well-characterized Fe(IV)Fe(III) cluster, X, and a W48 cation radical (W48(+)(*)). The latter may be reduced from solution to complete the two-step transfer of an electron to the buried diiron site. In this study, a (Fe(2)O(2))(4+) state that is probably the precursor to the X-W48(+)(*) diradical state in the reaction of the wild-type protein (R2-wt) has been characterized by exploitation of the observation that in R2 variants with W48 replaced with alanine (A), the otherwise disabled ET step can be mediated by indole compounds. Mixing of the Fe(II) complex of R2-W48A/Y122F with O(2) results in accumulation of an intermediate state that rapidly converts to X upon mixing with 3-methylindole (3-MI). The state comprises at least two species, of which each exhibits an apparent M?ssbauer quadrupole doublet with parameters characteristic of high-spin Fe(III) ions. The isomer shifts of these complexes and absence of magnetic hyperfine coupling in their M?ssbauer spectra suggest that both are antiferromagnetically coupled diiron(III) clusters. The fact that both rapidly convert to X upon treatment with a molecule (3-MI) shown in the preceding paper to mediate ET in W48A R2 variants indicates that they are more oxidized than X by one electron, which suggests that they have a bound peroxide equivalent. Their failure to exhibit either the long-wavelength absorption (at 650-750 nm) or M?ssbauer doublet with high isomer shift (>0.6 mm/s) that are characteristic of the putatively mu-1,2-peroxo-bridged diiron(III) intermediates that have been detected in the reactions of methane monooxygenase (P or H(peroxo)) and variants of R2 with the D84E ligand substitution suggests that they have geometries and electronic structures different from those of the previously characterized complexes. Supporting this deduction, the peroxodiiron(III) complex that accumulates in R2-W48A/D84E is much less reactive toward 3-MI-mediated reduction than the (Fe(2)O(2))(4+) state in R2-W48A/Y122F. It is postulated that the new (Fe(2)O(2))(4+) state is either an early adduct in an orthogonal pathway for oxygen activation or, more likely, the successor to a (mu-1,2-peroxo)diiron(III) complex that is extremely fleeting in R2 proteins with the wild-type ligand set but longer lived in D84E-containing variants.  相似文献   
178.
Glycosylphosphatidylinositol (GPI) anchors are crucial for the survival of the intraerythrocytic stage Plasmodium falciparum because of their role in membrane anchoring of merozoite surface proteins involved in parasite invasion of erythrocytes. Recently, we showed that mannosamine can prevent the growth of P. falciparum by inhibiting the GPI biosynthesis. Here, we investigated the effect of isomeric amino sugars glucosamine, galactosamine, and their N-acetyl derivatives on parasite growth and GPI biosynthesis. Glucosamine, but not galactosamine, N-acetylglucosamine, and N-acetylgalactosamine inhibited the growth of the parasite in a dose-dependent manner. Glucosamine specifically arrested the maturation of trophozoites, a stage at which the parasite synthesizes all of its GPI anchor pool and had no effect during the parasite growth from rings to early trophozoites and from late trophozoites to schizonts and merozoites. An analysis of GPI intermediates formed when parasites incubated with glucosamine indicated that the sugar interferes with the inositol acylation of glucosamine-phosphatidylinositol (GlcN-PI) to form GlcN-(acyl)PI. Consistent with the non-inhibitory effect on parasite growth, galactosamine, N-acetylglucosamine, and N-acetylgalactosamine had no significant effect on the parasite GPI biosynthesis. The results indicate that the enzyme that transfers the fatty acyl moiety to inositol residue of GlcN-PI discriminates the configuration at C-4 of hexosamines. An analysis of GPIs formed in a cell-free system in the presence and absence of glucosamine suggests that the effect of the sugar is because of direct inhibition of the enzyme activity and not gene repression. Because the fatty acid acylation of inositol is an obligatory step for the addition of the first mannosyl residue during the biosynthesis of GPIs, our results offer a strategy for the development of novel anti-malarial drugs. Furthermore, this is the first study to report the specific inhibition of GPI inositol acylation by glucosamine in eukaryotes.  相似文献   
179.
Chronic hypoxia (CH) results in reduced sensitivity to vasoconstrictors in conscious rats that persists upon restoration of normoxia. We hypothesized that this effect is due to endothelium-dependent hyperpolarization of vascular smooth muscle (VSM) cells after CH. VSM cell resting membrane potential was determined for superior mesenteric artery strips isolated from CH rats (PB = 380 Torr for 48 h) and normoxic controls. VSM cells from CH rats studied under normoxia were hyperpolarized compared with controls. Resting vessel wall intracellular Ca(2+) concentration ([Ca(2+)](i)) and pressure-induced vasoconstriction were reduced in vessels isolated from CH rats compared with controls. Vasoconstriction and increases in vessel wall [Ca(2+)](i) in response to the alpha(1)-adrenergic agonist phenylephrine (PE) were also blunted in resistance arteries from CH rats. Removal of the endothelium normalized resting membrane potential, resting vessel wall [Ca(2+)](i), pressure-induced vasoconstrictor responses, and PE-induced constrictor and Ca(2+) responses between groups. Whereas VSM cell hyperpolarization persisted in the presence of nitric oxide synthase inhibition, heme oxygenase inhibition restored VSM cell resting membrane potential in vessels from CH rats to control levels. We conclude that endothelial derived CO accounts for persistent VSM cell hyperpolarization and vasoconstrictor hyporeactivity after CH.  相似文献   
180.
Thermoalkaliphilic Bacillus sp. JB-99 was grown in a 250 ml Erlenmeyer flask containing 50 ml medium containing (g/l) Pigeon pea waste 10; NaNO3, 5.0; K2HPO4, 5.0; MgSO4 x 2H2O, 0.2 and Na2CO3, 10.0. Incubations were carried out at 50 degrees C on a rotary incubator shaker for 15 h. A high level of extra cellular thermostable protease activity was observed after 24 h incubation. The optimum temperature and pH for activity were 70 degrees C and 11, respectively, so this enzyme showed stable activity at high temperature and under alkaline conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号