首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404350篇
  免费   28049篇
  国内免费   179篇
  432578篇
  2018年   9019篇
  2017年   8701篇
  2016年   8319篇
  2015年   5146篇
  2014年   6631篇
  2013年   9499篇
  2012年   12746篇
  2011年   17456篇
  2010年   12653篇
  2009年   11676篇
  2008年   15232篇
  2007年   17030篇
  2006年   10640篇
  2005年   10399篇
  2004年   10630篇
  2003年   10551篇
  2002年   10501篇
  2001年   15944篇
  2000年   15890篇
  1999年   12022篇
  1998年   3821篇
  1997年   3789篇
  1996年   3443篇
  1995年   3164篇
  1992年   9541篇
  1991年   9750篇
  1990年   9491篇
  1989年   9507篇
  1988年   8754篇
  1987年   8253篇
  1986年   7530篇
  1985年   7852篇
  1984年   6345篇
  1983年   5333篇
  1982年   3627篇
  1981年   3180篇
  1980年   3132篇
  1979年   5962篇
  1978年   4646篇
  1977年   4230篇
  1976年   3993篇
  1975年   4813篇
  1974年   5313篇
  1973年   5269篇
  1972年   5347篇
  1971年   4961篇
  1970年   3902篇
  1969年   3795篇
  1968年   3554篇
  1967年   3202篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
The effects of adenosine on adenine nucleotide metabolism in [14C]adenine-labeled rat thymocytes were studied. It was shown that adenosine increases the intracellular pool of adenine nucleotides, predominantly ATP, which is accompanied by marked acceleration of their catabolism and a release of labeled products (especially inosine, hypoxanthine and adenosine) from the thymocytes. The effect of adenosine depends on its concentration and manifests itself already at 10(-6) M. 2-Deoxycoformycin partly relieves the effect of adenosine on adenine nucleotide metabolism. Exogenous deoxyadenosine, inosine, hypoxanthine and adenine, unlike adenosine, do not significantly affect the adenine nucleotide catabolism and the label release from the cells. All the effectors under study strongly increase inosine transport from the thymocytes, and inhibit, with the exception of adenosine, the hypoxanthine release from the cells.  相似文献   
972.
Sequence context may profoundly alter the character of structural transitions in supercoiled DNA (Sullivan, K. M., and Lilley, D. M. J. (1986) Cell 47, 817-827). The A + T-rich sequences of ColE1, which flank the inverted repeat, are responsible for cruciform extrusion following a mechanistic pathway which proceeds via a relatively large denatured region. This C-type mechanism results in kinetic properties which are very different from those of the S-type pathway, the normal mechanism of cruciform extrusion in the absence of the ColE1 flanking sequences. We have analyzed the sequence requirements for the induction of the C-type pathway. The 100-base pair left side sequence of ColE1 (colL) was subjected to systematic deletion using Bal31 exonucleolysis, showing that removal of 30 base pairs from its right end abolished extrusion by the C-type process. A cloned oligonucleotide of the same 30-base pair sequence was sufficient to confer C-type cruciform extrusion on an adjacent inverted repeat. An A + T-rich sequence from Drosophila was found to act like the ColE1 sequences. We have studied the effects of introducing sequences between the A + T-rich colL, and the inverted repeat on which it acts. A range of such fragments was found, from those which augment the effect of colL to those which block it completely. In general, it appears that the ability of a sequence to block the effect of colL depends on both the length and G + C content of the fragment. The sequences which are responsible for the extrusion by the C-type pathway are termed C-type inducing sequences, while sequences which are interposed between the inducing sequence and the inverted repeat, and which may either augment or attenuate the effect, but which cannot function as inducing sequences in isolation, are termed transmitting sequences. The results of these studies are most readily consistent with long range destabilization of DNA structure via telestability effects.  相似文献   
973.
H D Campbell  I G Young 《Biochemistry》1983,22(25):5754-5760
The respiratory NADH dehydrogenase of Escherichia coli has been further amplified in vivo by genetic methods. The enzyme, a single polypeptide of Mr 47 200 of known amino acid sequence [Young, I. G., Rogers, B. L., Campbell, H. D., Jaworowski, A., & Shaw, D. C. (1981) Eur. J. Biochem. 116, 165-170], constitutes 10-15% of the total protein in the amplified membranes. In situ in the membrane, the enzyme contains 1 mol of FAD/mol of subunit and has a specific NADH:ubiquinone-1 oxidoreductase activity of approximately 1100-1200 units mg-1 at 30 degrees C, pH 7.5. The purified enzyme contains phospholipid, which remains closely associated with it during gel filtration on Sephacryl S-300 in the presence of 0.1% (w/v) cholate at low ionic strength. Under these conditions the enzyme is extensively aggregated (apparent Mr greater than 10(6]. This procedure yielded enzyme with a specific activity of 980 units mg-1, similar to the value observed in the membrane. This preparation contained less than 0.1 mol of Fe/mol of enzyme, confirming that Fe is not involved in reduction of ubiquinone 1 catalyzed by the enzyme. Neutron activation analysis of purified enzyme has demonstrated the absence of 35 trace elements including Se, Zn, Mn, Co, W, Cu, and Fe. The enzyme polypeptide, prepared completely free of phospholipid, FAD, and ubiquinone by gel filtration in the presence of sodium dodecyl sulfate, has been reactivated. The results show that the only components necessary for catalysis of ubiquinone-1 reduction by NADH in this system are the enzyme polypeptide, FAD, and phospholipid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
974.
Mammalian cells in culture, transfected with human renin gene, can provide a useful tool for studying renin biosynthesis and secretion. We transfected fibroblast cells (mouse L929 and Chinese hamster ovary cells) and pituitary tumor cells (mouse AtT-20) with the human renin gene and a selectable plasmid (pSV2Neo). Transfected fibroblasts synthesize prorenin only. Prorenin is secreted by fibroblasts constitutively and the secretion is not influenced by 8-bromo-cAMP. On the other hand, transfected AtT-20 cells synthesized both prorenin and mature active renin. Transfected AtT-20 cells release prorenin by constitutive secretion but mature renin is secreted by a regulated mechanism since the secretion of the former is not influenced by 8-bromo-cAMP but the release of the latter is significantly stimulated. Our studies demonstrate that human renin may be secreted by at least two cellular pathways: prorenin by a constitutive pathway and mature renin by a regulated pathway. These transfected cells may provide useful models for studies of human renin synthesis, processing, and secretion.  相似文献   
975.
976.
977.
978.
We have used a preparation of rat liver plasma membranes to study the binding of rat apolipoprotein E-deficient HDL to rat liver. The membranes were found to bind HDL by a saturable process that was competed for by excess unlabeled HDL. The binding was temperature-dependent and was 85% receptor-mediated when incubated at 4, 22 and 37 degrees C. The affinity of the binding site for the HDL was consistent at all temperatures, while the maximum binding capacity increased at higher temperatures. The specific binding of HDL to the membranes did not require calcium and was independent of the concentration of NaCl in the media. The effect of varying the pH of the media on HDL binding was small, being 30% higher at pH 6.5 than at pH 9.0. Both rat HDL and human HDL3 were found to compete for the binding of rat HDL to the membranes, whereas rat VLDL remnants and human LDL did not compete. At 4 degrees C, complexes of dimyristoylphosphatidylcholine (DMPC) and apolipoproteins A-I, A-IV and the C apolipoproteins, but not apolipoprotein E, competed for HDL binding to the membranes. At 22 and 37 degrees C, all DMPC-apolipoprotein complexes competed to a similar extent, DMPC vesicles that contained no protein did not compete for the binding of HDL. These results suggest that the rat liver possesses a specific receptor for apolipoprotein E-deficient HDL that recognizes apolipoproteins A-I, A-IV and the C apolipoproteins as ligands.  相似文献   
979.
980.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号