首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   756657篇
  免费   71947篇
  国内免费   421篇
  829025篇
  2018年   7998篇
  2017年   7960篇
  2016年   11705篇
  2015年   16173篇
  2014年   18351篇
  2013年   24196篇
  2012年   26167篇
  2011年   24585篇
  2010年   17354篇
  2009年   15888篇
  2008年   20629篇
  2007年   21305篇
  2006年   20114篇
  2005年   24791篇
  2004年   23416篇
  2003年   21056篇
  2002年   18343篇
  2001年   34950篇
  2000年   34333篇
  1999年   27367篇
  1998年   8512篇
  1997年   8826篇
  1996年   8123篇
  1995年   7545篇
  1994年   7257篇
  1993年   7156篇
  1992年   21975篇
  1991年   21428篇
  1990年   20808篇
  1989年   20463篇
  1988年   18822篇
  1987年   17569篇
  1986年   16263篇
  1985年   16183篇
  1984年   13024篇
  1983年   10858篇
  1982年   7831篇
  1981年   6968篇
  1980年   6644篇
  1979年   12182篇
  1978年   9285篇
  1977年   8469篇
  1976年   7888篇
  1975年   8983篇
  1974年   9831篇
  1973年   9602篇
  1972年   8726篇
  1971年   8054篇
  1970年   6976篇
  1969年   6763篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
141.
142.
143.
Chromatophores from Rhodopseudomonas capsulata cells grown semiaerobically in the dark oxidize NADH, succinate, and dichlorophenolindophenol. In the presence of N3? these activities are inhibited, but light induces oxidation of dichlorophenolindophenol with O2 as a terminal electron acceptor. Cyanide also inhibits electron transport but much higher concentrations are required to inhibit the photooxidation than the dark oxidation. The photooxidation was studied in a mutant strain of Rhodopseudomonas capsulata (YIV) which cannot grow anaerobically in the light, but similarly to the wild type, grows in the presence of oxygen. Chromatophores from YIV mutant catalyze photophosphorylation and dark oxidation activities with the same properties as those of the wild type. However, the rate of photooxidation in the mutant is only one-third that of the wild type. Based on the differential inhibitor sensitivity and on the mutation it is suggested that the photooxidase is different from the two respiratory oxidases and that this photooxidation activity might be essential for growth of the cells under anaerobic conditions in the light.  相似文献   
144.
Prediction of sequential antigenic regions in proteins   总被引:30,自引:0,他引:30  
Prediction of antigenic regions in a protein will be helpful for a rational approach to the synthesis of peptides which may elicit antibodies reactive with the intact protein. Earlier methods are based on the assumption that antigenic regions are primarily hydrophilic regions at the surface of the protein molecule. The method presented here is based on the amino acid composition of known antigenic regions in 20 proteins which is compared with that of 314 proteins [(1978) Atlas of Protein Sequence and Structure, vol. 5, suppl. 3, 363-373]. Antigenicity values were derived from the differences between the two data sets. The method was applied to bovine ribonuclease, the B-subunit of cholera toxin and herpes simplex virus type 1 glycoprotein D. There was a good correlation between the predicted regions and previously determined antigenic regions.  相似文献   
145.
The major active protein phosphatase present in a rabbit skeletal muscle extract is associated with the glycogen particle and migrates in sucrose density gradient centrifugation as a Mr = 70,000 protein and contains modulator activity. Addition of extra modulator protein causes a time- and concentration-dependent conversion of the enzyme to an inactive FA-ATP, Mg-dependent form. The intrinsic modulator in the active phosphatase is destroyed by limited proteolysis without an appreciable change in the phosphatase activity. The proteolyzed active enzyme has a lower molecular weight (Mr = 40,000) and it reassociates with the modulator producing a FA-ATP, Mg-dependent enzyme form (Mr = 60,000). The modulator protein is used stoichiometrically in the activation of the ATP, Mg-dependent phosphatase. This is in agreement with the presence of one unit of modulator activity per unit of native spontaneously active phosphatase.  相似文献   
146.
147.
148.
Using homogeneous cytochrome P-450, we have shown that the well-known metyrapone-dithionite reduced cytochrome P-450 complex is specific for the cytochrome P-450b induced by phenobarbital. A linear relationship was observed between the absorbance of metyrapone-reduced cytochrome P-450 complex and the one of CO-reduced cytochrome P-450 complex, the usual method for the determination of cytochrome P-450. A method has been proposed for the specific determination of the cytochrome P-450b.  相似文献   
149.
The time and dose dependence of the relationship between uptake of labelled precursors into protein and RNA and production of testosterone by rabbit follicles was examined. Although testosterone production was stimulated by luteinizing hormone at concentrations between 0.1 and 10 microgram/ml, the uptake of [3H]leucine into protein was significant only when the concentration of luteinizing hormone was greater than 2.5 microgram/ml. Increased production of testosterone was observed within 15 min of stimulation with luteinizing hormone whereas uptake of [3H]leucine was only significant at 90 min. Puromycin (40 microgram/ml) and cycloheximide (10 microgram/ml) in the presence of luteinizing hormone inhibited the synthesis of both testosterone and protein. However, lower concentrations of puromycin (0.1, 1 and 10 microgram/ml) and cycloheximide (1 microgram/ml) had no effect on luteinizing hormone-induced testosterone production but significantly inhibited protein synthesis by 58, 37, 31 and 71%, respectively. Actinomycin D (20, 80 and 160 microgram/ml) alone and in combination with 5 microgram luteinizing hormone/ml severely inhibited uptake of [3H]uridine into RNA without affecting testosterone production. However, with 1 microgram actinomycin/ml, testosterone production was significantly (P less than 0.01) greater than in the presence of luteinizing hormone alone. These results cast doubt on the obligatory role of RNA and protein synthesis in rabbit ovarian follicular steroidogenesis.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号