首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1001907篇
  免费   92164篇
  国内免费   1083篇
  2018年   19713篇
  2017年   18167篇
  2016年   18894篇
  2015年   15867篇
  2014年   18751篇
  2013年   27024篇
  2012年   33904篇
  2011年   42310篇
  2010年   31751篇
  2009年   26804篇
  2008年   36238篇
  2007年   38587篇
  2006年   27406篇
  2005年   26396篇
  2004年   26752篇
  2003年   25712篇
  2002年   25132篇
  2001年   39423篇
  2000年   38812篇
  1999年   31239篇
  1998年   11432篇
  1997年   11505篇
  1996年   10960篇
  1995年   10093篇
  1994年   9759篇
  1993年   9748篇
  1992年   25251篇
  1991年   24970篇
  1990年   24282篇
  1989年   23790篇
  1988年   21906篇
  1987年   20953篇
  1986年   19479篇
  1985年   19588篇
  1984年   16061篇
  1983年   13896篇
  1982年   10459篇
  1981年   9433篇
  1980年   8830篇
  1979年   14950篇
  1978年   11796篇
  1977年   10679篇
  1976年   10282篇
  1975年   11534篇
  1974年   12411篇
  1973年   12335篇
  1972年   11431篇
  1971年   10385篇
  1970年   8815篇
  1969年   8698篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
991.
In order to adapt to the fluctuations in soil salinity/osmolarity the bacteria of the genusAzospirillum accumulate compatible solutes such as glutamate, proline, glycine betaine, trehalose, etc. Proline seems to play a major role in osmoadaptation. With increase in osmotic stress the dominant osmolyte inA. brasilense shifts from glutamate to proline. Accumulation of proline inA. brasilense occurs by both uptake and synthesis. At higher osmolarityA. brasilense Sp7 accumulates high intracellular concentration of glycine betaine which is taken up via a high affinity glycine betaine transport system. A salinity stress induced, periplasmically located, glycine betaine binding protein (GBBP) of ca. 32 kDa size is involved in glycine betaine uptake inA. brasilense Sp7. Although a similar protein is also present inA. brasilense Cd it does not help in osmoprotection. It is not known ifA. brasilense Cd can also accumulate glycine betaine under salinity stress and if the GBBP-like protein plays any role in glycine betaine uptake. This strain, under salt stress, seems to have inadequate levels of ATP to support growth and glycine betaine uptake simultaneously. ExceptA. halopraeferens, all other species ofAzospirillum lack the ability to convert choline into glycine betaine. Mobilization of thebet ABT genes ofE. coli intoA. brasilense enables it to use choline for osmoprotection. Recently, aproU-like locus fromA. lipoferum showing physical homology to theproU gene region ofE. coli has been cloned. Replacement of this locus, after inactivation by the insertion of kanamycin resistance gene cassette, inA. lipoferum genome results in the recovery of mutants which fail to use glycine betaine as osmoprotectant.  相似文献   
992.
At Aktau Mountain in the Ili depression of eastern Kazakstan, fossil mammals that encompass the Paleogene-Neogene boundary occur at three stratigraphic levels. The lowest level is in the lower Kyzylbulak Formation and produces Brontotheriidae and the hyracodontidArdynia and is tentatively assigned a late Eocene (Ergilian) age. The lower part of the overlying Aktau Formation produces fossils of the giant rhinocerosParaceratherium and is tentatively assigned a late Oligocene (Tabenbulukian) age. The upper part of the Aktau Formation yields a fossil mammal assemblage that includesGomphotherium,Stephanocemas, Brachypotherium andLagomeryx. It is clearly of Miocene age, probably late early Miocene (late Burdigalian), a correlative of European Reference Level MN 5 and the late Shanwangian of China. The Paleogene-Neogene boundary at Aktau Mountain thus is in the Aktau Formation.  相似文献   
993.
Habitat loss is one of the main threats to wildlife. Therefore, knowledge of habitat use and preference is essential for the design of conservation strategies and identification of priority sites for the protection of endangered species. The yellow‐tailed woolly monkey (Lagothrix flavicauda Humboldt, 1812), categorized as Critically Endangered on the IUCN Red List, is endemic to montane forests in northern Peru where its habitat is greatly threatened. We assessed how habitat use and preference in L. flavicauda are linked to forest structure and composition. The study took place near La Esperanza, in the Amazonas region, Peru. Our objective was to identify characteristics of habitat most utilized by L. flavicauda to provide information that will be useful for the selection of priority sites for conservation measures. Using presence records collected from May 2013 to February 2014 for one group of L. flavicauda, we classified the study site into three different use zones: low‐use, medium‐use, and high‐use. We assessed forest structure and composition for all use zones using 0.1 ha Gentry vegetation transects. Results show high levels of variation in plant species composition across the three use zones. Plants used as food resources had considerably greater density, dominance, and ecological importance in high‐use zones. High‐use zones presented similar structure to medium‐ and low‐use zones; thus it remains difficult to assess the influence of forest structure on habitat preference. We recommend focusing conservation efforts on areas with a similar floristic composition to the high‐use zones recorded in this study and suggest utilizing key alimentation species for reforestation efforts.  相似文献   
994.
31P nuclear magnetic resonance (NMR) saturation-transfer (ST) techniques have been used to measure steady-state flows through phosphate-adenosine 5'-triphosphate (ATP) exchange reactions in glucose-grown derepressed yeast. Our results have revealed that the reactions catalyzed by glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase (GAPDH/PGK) and by the mitochondrial ATPase contribute to the observed ST. Contributions from these reactions were evaluated by performing ST studies under various metabolic conditions in the presence and absence of either iodoacetate, a specific inhibitor of GAPDH, or the respiratory chain inhibitor antimycin A. Intracellular phosphate (Pi) longitudinal relaxation times were determined by performing inversion recovery experiments during steady-state ATP gamma saturation and were used in combination with ST data to determine Pi consumption rates. 13C NMR and O2 electrode measurements were also conducted to monitor changes in rates of glucose consumption and O2 consumption, respectively, under the various metabolic conditions examined. Our results suggest that GAPDH/PGK-catalyzed Pi-ATP exchange is responsible for antimycin-resistant saturation transfer observed in anaerobic and aerobic glucose-fed yeast. Kinetics through GAPDH/PGK were found to depend on metabolic conditions. The coupled system appears to operate in a unidirectional manner during anaerobic glucose metabolism and bidirectionally when the cells are respiring on exogenously supplied ethanol. Additionally, mitochondrial ATPase activity appears to be responsible for the transfer observed in iodoacetate-treated aerobic cells supplied with either glucose or ethanol, with synthesis of ATP occurring unidirectionally.  相似文献   
995.
Calcium is an essential cofactor in the oxygen-evolving complex (OEC) of photosystem II (PSII). The removal of Ca2+ or its substitution by any metal ion except Sr2+ inhibits oxygen evolution. We used steady-state enzyme kinetics to measure the rate of O2 evolution in PSII samples treated with an extensive series of mono-, di-, and trivalent metal ions in order to determine the basis for the affinity of metal ions for the Ca2+-binding site. Our results show that the Ca2+-binding site in PSII behaves very similarly to the Ca2+-binding sites in other proteins, and we discuss the implications this has for the structure of the site in PSII. Activity measurements as a function of time show that the binding site achieves equilibrium in 4 h for all of the PSII samples investigated. The binding affinities of the metal ions are modulated by the 17 and 23 kDa extrinsic polypeptides; their removal decreases the free energy of binding of the metal ions by 2.5 kcal/mol, but does not significantly change the time required to reach equilibrium. Monovalent ions are effectively excluded from the Ca2+-binding site, exhibiting no inhibition of O2 evolution. Di- and trivalent metal ions with ionic radii similar to that of Ca2+ (0.99 A) bind competitively with Ca2+ and have the highest binding affinity, while smaller metal ions bind more weakly and much larger ones do not bind competitively. This is consistent with a size-selective Ca2+-binding site that has a rigid array of coordinating ligands. Despite the large number of metal ions that competitively replace Ca2+ in the OEC, only Sr2+ is capable of partially restoring activity. Comparing the physical characteristics of the metal ions studied, we identify the pK(a) of the aqua ion as the factor that determines the functional competence of the metal ion. This suggests that Ca2+ is directly involved in the chemistry of water oxidation and is not only a structural cofactor in the OEC. We propose that the role of Ca2+ is to act as a Lewis acid, binding a substrate water molecule and tuning its reactivity.  相似文献   
996.
997.
Elastoviscosometric parameters of DNA from normal subjects of different age and patients with Down syndrome were assessed. Characteristics of DNA isolated from lymphocytes trisomic for chromosome 21 were studied to compare normal and pathological rates of ageing. Increased elastoviscosity was observed in normal subjects above 60. Similar changes in this parameter were noted in aberrant lymphocytes isolated from patients above 10. The established dependence of elastoviscosity on ethidium bromide concentration led to the assumption that an increase in hydrodynamic DNA volume in human leukocytes during ageing was due to accumulation of spontaneous irreparable DNA lesions.  相似文献   
998.
999.
1000.
Isolated rabbit hearts were perfused by the Langendorff technique, made ischemic and subsequently reperfused. It was found that ischemia results in: (i) aggregation of the intramembranous particles in the sarcolemma and (ii) extrusion of pure lipidic multilamellar structures (liposomes) from swollen mitochondria. Subsequent reperfusion resulted in further aggregation of the sarcolemmal intramembranous particles and disruption of the sarcolemma, which was attended by the formation of liposome-like structures. Intramembrane particle aggregation is explained in terms of lateral phase separation of the membrane lipids and a reduction of repulsive forces between the membrane proteins, both induced by a decrease in pH and an increase in Ca2+ concentration intracellularly. The formation and extrusion of the multilamellar structures are discussed in terms of destabilization of the bilayer which results in a structural blebbing-off of pure lipid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号