首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2947篇
  免费   240篇
  2023年   7篇
  2022年   25篇
  2021年   48篇
  2020年   30篇
  2019年   43篇
  2018年   50篇
  2017年   54篇
  2016年   67篇
  2015年   113篇
  2014年   139篇
  2013年   162篇
  2012年   195篇
  2011年   226篇
  2010年   124篇
  2009年   152篇
  2008年   169篇
  2007年   201篇
  2006年   171篇
  2005年   178篇
  2004年   166篇
  2003年   160篇
  2002年   151篇
  2001年   42篇
  2000年   23篇
  1999年   32篇
  1998年   44篇
  1997年   31篇
  1996年   23篇
  1995年   41篇
  1994年   30篇
  1993年   33篇
  1992年   18篇
  1991年   25篇
  1990年   29篇
  1989年   23篇
  1988年   21篇
  1987年   9篇
  1986年   12篇
  1985年   7篇
  1984年   12篇
  1982年   12篇
  1981年   9篇
  1980年   10篇
  1978年   5篇
  1977年   6篇
  1976年   8篇
  1975年   7篇
  1971年   8篇
  1970年   10篇
  1968年   4篇
排序方式: 共有3187条查询结果,搜索用时 31 毫秒
971.
Heme d1 plays an important role in denitrification as the essential cofactor of the cytochrome cd1 nitrite reductase NirS. At present, the biosynthesis of heme d1 is only partially understood. The last step of heme d1 biosynthesis requires a so far unknown enzyme that catalyzes the introduction of a double bond into one of the propionate side chains of the tetrapyrrole yielding the corresponding acrylate side chain. In this study, we show that a Pseudomonas aeruginosa PAO1 strain lacking the NirN protein does not produce heme d1. Instead, the NirS purified from this strain contains the heme d1 precursor dihydro-heme d1 lacking the acrylic double bond, as indicated by UV-visible absorption spectroscopy and resonance Raman spectroscopy. Furthermore, the dihydro-heme d1 was extracted from purified NirS and characterized by UV-visible absorption spectroscopy and finally identified by high-resolution electrospray ionization mass spectrometry. Moreover, we show that purified NirN from P. aeruginosa binds the dihydro-heme d1 and catalyzes the introduction of the acrylic double bond in vitro. Strikingly, NirN uses an electron bifurcation mechanism for the two-electron oxidation reaction, during which one electron ends up on its heme c cofactor and the second electron reduces the substrate/product from the ferric to the ferrous state. On the basis of our results, we propose novel roles for the proteins NirN and NirF during the biosynthesis of heme d1.  相似文献   
972.
973.
974.
Enhancement of calcineurin inhibitor nephrotoxicity by sirolimus (SRL) is limiting the clinical use of this drug combination. We compared the dose-dependent effects of the structurally related everolimus (EVL) and sirolimus (SRL) alone, and in combination with cyclosporine (CsA), on the rat kidney. Lewis rats were treated by oral gavage for 28 days using a checkerboard dosing format (0, 3.0, 6.0 and 10.0 CsA and 0, 0.5, 1.5 and 3.0 mg/kg/day SRL or EVL, n = 4/dose combination). After 28 days, oxidative stress, energy charge, kidney histologies, glomerular filtration rates, and concentrations of the immunosuppressants were measured along with 1H-magnetic resonance spectroscopy (MRS) and gas chromatography- mass spectrometry profiles of cellular metabolites in urine. The combination of CsA with SRL led to higher urinary glucose concentrations and decreased levels of urinary Krebs cycle metabolites when compared to controls, suggesting that CsA+SRL negatively impacted proximal tubule metabolism. Unsupervised principal component analysis of MRS spectra distinguished unique urine metabolite patterns of rats treated with CsA+SRL from those treated with CsA+EVL and the controls. SRL, but not EVL blood concentrations were inversely correlated with urine Krebs cycle metabolite concentrations. Interestingly, the higher the EVL concentration, the closer urine metabolite patterns resembled those of controls, while in contrast, the combination of the highest doses of CsA+SRL showed the most significant differences in metabolite patterns. Surprisingly in this rat model, EVL and SRL in combination with CsA had different effects on kidney biochemistry, suggesting that further exploration of EVL in combination with low dose calcineurin inhibitors may be of potential benefit.  相似文献   
975.
In this study, a precise and reliable ultra-high performance liquid chromatography (UHPLC) method for the simultaneous determination of non-canonical (norvaline and norleucine) and standard amino acids (aspartic acid, glutamic acid, serine, histidine, glycine, threonine, arginine, tyrosine, methionine, valine, phenylalanine, isoleucine, leucine) in biopharmaceutical-related fermentation processes was established. After pre-column derivatization with ortho-phthaldialdehyde and 2-mercaptoethanol, the derivatives were separated on a sub-2 μm particle C18 reverse-phase column. Identification and quantification of amino acids were carried out by fluorescence detection. To test method feasibility on standard HPLC instruments, the assay was properly transferred to a core–shell particle C18 reverse-phase column. The limits of detection showed excellent sensitivity by values from 0.06 to 0.17 pmol per injection and limits of quantification between 0.19 and 0.89 pmol. In the present study, the newly established UHPLC method was applied to a recombinant antibody Escherichia coli fermentation process for the analysis of total free amino acids. We were able to specifically detect and quantify the unfavorable amino acids in such complex samples. Since we observed trace amounts of norvaline and norleucine during all fermentation phases, an obligatory process monitoring should be considered to improve quality of recombinant protein drugs in future.  相似文献   
976.
977.
The consideration of inherent population inhomogeneities of mammalian cell cultures becomes increasingly important for systems biology study and for developing more stable and efficient processes. However, variations of cellular properties belonging to different sub‐populations and their potential effects on cellular physiology and kinetics of culture productivity under bioproduction conditions have not yet been much in the focus of research. Culture heterogeneity is strongly determined by the advance of the cell cycle. The assignment of cell‐cycle specific cellular variations to large‐scale process conditions can be optimally determined based on the combination of (partially) synchronized cultivation under otherwise physiological conditions and subsequent population‐resolved model adaptation. The first step has been achieved using the physical selection method of countercurrent flow centrifugal elutriation, recently established in our group for different mammalian cell lines which is presented in Part I of this paper series. In this second part, we demonstrate the successful adaptation and application of a cell‐cycle dependent population balance ensemble model to describe and understand synchronized bioreactor cultivations performed with two model mammalian cell lines, AGE1.HNAAT and CHO‐K1. Numerical adaptation of the model to experimental data allows for detection of phase‐specific parameters and for determination of significant variations between different phases and different cell lines. It shows that special care must be taken with regard to the sampling frequency in such oscillation cultures to minimize phase shift (jitter) artifacts. Based on predictions of long‐term oscillation behavior of a culture depending on its start conditions, optimal elutriation setup trade‐offs between high cell yields and high synchronization efficiency are proposed. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:175–185, 2015  相似文献   
978.

Background

SNPs near the interferon lambda (IFNL) 3 gene are predictors for sustained virological response (SVR) in patients with chronic hepatitis C genotype (GT) 1. In addition, a dinucleotide frame shift in ss469415590 was described, which generates IFNL4. In this study, we compared the role of IFNL4 variants with IFNL3-(rs12979860) and IFNL3-(rs8099917) on response to pegylated (PEG)-IFN and Ribavirin (RBV) in patients with chronic hepatitis C GT2/3.

Methods

We recruited 1006 patients with chronic hepatitis C and GT2/3 in a large German registry. A treatment with PEG-IFN and Ribavirin was started by 959 patients. We performed genotyping of IFNL3 (rs12979860, n = 726; rs8099917, n = 687) and of IFNL4 (ss469415590; n = 631).

Results

Both preferable IFNL3 genotypes were associated with RVR (both p<0.0001) rather than with SVR (rs12979860: p = 0.251; rs8099917: p = 0.447). Only RVR was linked to SVR in univariate and multivariate analyzes (both p<0.001). Concordance of genotyping in patients with available serum samples and EDTA blood samples (n = 259) was more than 96% for both IFNL3 SNPs. IFNL3-(rs12979860) correlated with IFNL4: 99.2% of patients with IFNL3-(rs12979860)-CC were IFNL4-(ss469415590)-TT/TT. IFNL3-(rs12979860)-CT was linked with IFNL4-(ss469415590)-TT/ΔG (98.0%) and IFNL3-(rs12979860)-TT was associated with IFNL4-(ss469415590)-ΔG/ΔG (97.6%).

Conclusion

IFNL3 genotyping from serum was highly efficient and can be used as an alternative if EDTA whole blood is not available. In Caucasian GT2/3 patients genotyping for INFL4-(ss469415590) does not lead to additional information for the decision-making process. Importantly, IFNL3 SNPs were not associated with SVR but with RVR. Even in the era of new direct acting antiviral (DAA) therapies, IFNL3 testing may therefore still be considered for naïve GT2/3 patients to decide if dual Peg-IFN/RBV therapy is an option in resource limited regions.  相似文献   
979.
980.
Important requirements for the analysis of multichannel EEG data are efficient techniques for signal enhancement, signal decomposition, feature extraction, and dimensionality reduction. We propose a new approach for spatial harmonic analysis (SPHARA) that extends the classical spatial Fourier analysis to EEG sensors positioned non-uniformly on the surface of the head. The proposed method is based on the eigenanalysis of the discrete Laplace-Beltrami operator defined on a triangular mesh. We present several ways to discretize the continuous Laplace-Beltrami operator and compare the properties of the resulting basis functions computed using these discretization methods. We apply SPHARA to somatosensory evoked potential data from eleven volunteers and demonstrate the ability of the method for spatial data decomposition, dimensionality reduction and noise suppression. When employing SPHARA for dimensionality reduction, a significantly more compact representation can be achieved using the FEM approach, compared to the other discretization methods. Using FEM, to recover 95% and 99% of the total energy of the EEG data, on average only 35% and 58% of the coefficients are necessary. The capability of SPHARA for noise suppression is shown using artificial data. We conclude that SPHARA can be used for spatial harmonic analysis of multi-sensor data at arbitrary positions and can be utilized in a variety of other applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号