首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3548篇
  免费   272篇
  3820篇
  2022年   26篇
  2021年   57篇
  2020年   33篇
  2019年   49篇
  2018年   58篇
  2017年   63篇
  2016年   82篇
  2015年   136篇
  2014年   163篇
  2013年   198篇
  2012年   234篇
  2011年   260篇
  2010年   143篇
  2009年   171篇
  2008年   201篇
  2007年   220篇
  2006年   189篇
  2005年   196篇
  2004年   189篇
  2003年   182篇
  2002年   168篇
  2001年   43篇
  2000年   25篇
  1999年   37篇
  1998年   47篇
  1997年   35篇
  1996年   31篇
  1995年   45篇
  1994年   32篇
  1993年   36篇
  1992年   20篇
  1991年   25篇
  1990年   28篇
  1989年   26篇
  1988年   23篇
  1987年   10篇
  1986年   13篇
  1985年   13篇
  1984年   12篇
  1982年   16篇
  1981年   10篇
  1980年   11篇
  1978年   13篇
  1977年   10篇
  1976年   12篇
  1973年   12篇
  1970年   9篇
  1930年   8篇
  1929年   8篇
  1896年   11篇
排序方式: 共有3820条查询结果,搜索用时 0 毫秒
91.
Ectopic expression of viral movement proteins (MPs) has previously been shown to alter plasmodesmata (PD) function and carbon partitioning in transgenic plants, giving rise to the view of PD being dynamic and highly regulated structures that allow resource allocation to be adapted to environmental and developmental needs. However, most work has been restricted to solanaceous species and the potential use of MP expression to improve biomass and yield parameters has not been addressed in detail. Here we demonstrate that MP-mediated modification of PD function can substantially alter assimilate allocation, biomass production, and reproductive growth in Arabidopsis (Arabidopsis thaliana). These effects were achieved by constitutive expression of the potato leaf roll virus 17-kD MP (MP17) fused to green fluorescent protein (GFP) in different Arabidopsis ecotypes. The resulting transgenic plants were analyzed for PD localization of the MP17:GFP fusion protein and different lines with low to high expression levels were selected for further analysis. Low-level accumulation of MP17 resulted in enhanced sucrose efflux from source leaves and a considerably increased vegetative biomass production. In contrast, high MP17 levels impaired sucrose export, resulting in source leaf-specific carbohydrate accumulation and a strongly reduced vegetative growth. Surprisingly, later during development the MP17-mediated inhibition of resource allocation was reversed, and final seed yield increased in average up to 30% in different transgenic lines as compared to wild-type plants. This resulted in a strongly improved harvest index. The release of the assimilate export block was paralleled by a reduced PD binding of MP17 in senescing leaves, indicating major structural changes of PD during leaf senescence.  相似文献   
92.
93.
Summary Carboxyl groups present on the outer face of the hexagonally ordered S-layer lattices from Bacillus stearothermophilus PV72 and Clostridium thermohydrosulfuricum L111-69 were activated with carbodiimide. The reaction of the activated carboxyl groups with free amino groups of low molecular weight nucleophiles was controlled by labelling with polycationized ferritin, a net positively charged topographical marker for electron microscopy, which densely binds to S-layers possessing free carboxyl groups. Carbodiimide-activated carboxyl groups were also allowed to react with amino groups of ferritin (MW 440 000) and invertase (MW 270 000). Covalent attachment of ferritin was examined by electron microscopy. Using invertase, approximately 1 mg enzyme was bound per mg S-layer protein indicating a high packing density of invertase molecules on the outer face of the S-layer lattice. The immobilized invertase retained 70% of its original activity.  相似文献   
94.
The subcellular distribution of hexoses, sucrose and amino acids among the stromal, cytosolic and vacuolar compartments was analysed by a nonaqueous fractionation technique in leaves of tobacco (Nicotiana tabaccum L.) wild-type and transgenic plants expressing a yeast-derived invertase in the cytosolic, vacuolar or apoplasmic compartment. In the wild-type plants the amino acids were found to be located in the stroma and in the cytosol, sucrose mainly in the cytosol and up to 98% of the hexoses in the vacuole. In the leaves of the various transformants, where the contents of hexoses were greater than in wild-type plants, again 97–98% of these hexoses were found in the vacuoles. It is concluded that leaf vacuoles contain transporters for the active uptake of glucose and fructose against a high concentration gradient. A comparison of estimated metabolite concentrations in the subcellular compartments of wild-type and transformant plants indicated that the decreased photosynthetic capacity of the transformants is not due to an osmotic effect on photosynthesis, as was shown earlier to be the case in transformed potato leaves, but is the result of a long-term dedifferentiation of tobacco leaf cells to heterotrophic cells.Abbreviations apo-inv tobacco plant with yeast invertase in the apoplasm - Chl chlorophyll - cy-inv tobacco plant with yeast invertase in the cytosol - vac-inv tobacco plant with yeast invertase in the vacuole - WT wild-type tobacco plant The authors thank A. Großpietsch for her able technical assistance. This work has been supported by the Bundesminister für Forschung und Technologie.  相似文献   
95.

Introduction

Chronically relapsing inflammation, tissue remodeling and fibrosis are hallmarks of inflammatory bowel diseases. The aim of this study was to investigate changes in connective tissue in a chronic murine model resulting from repeated cycles of dextran sodium sulphate (DSS) ingestion, to mimic the relapsing nature of the human disease.

Materials and Methods

C57BL/6 mice were exposed to DSS in drinking water for 1 week, followed by a recovery phase of 2 weeks. This cycle of exposure was repeated for up to 3 times (9 weeks in total). Colonic inflammation, fibrosis, extracellular matrix proteins and colonic gene expression were studied. In vivo MRI T 2 relaxometry was studied as a potential non-invasive imaging tool to evaluate bowel wall inflammation and fibrosis.

Results

Repeated cycles of DSS resulted in a relapsing and remitting disease course, which induced a chronic segmental, transmural colitis after 2 and 3 cycles of DSS with clear induction of fibrosis and remodeling of the muscular layer. Tenascin expression mirrored its expression in Crohn’s colitis. Microarray data identified a gene expression profile different in chronic colitis from that in acute colitis. Additional recovery was associated with upregulation of unique genes, in particular keratins, pointing to activation of molecular pathways for healing and repair. In vivo MRI T2 relaxometry of the colon showed a clear shift towards higher T2 values in the acute stage and a gradual regression of T2 values with increasing cycles of DSS.

Conclusions

Repeated cycles of DSS exposure induce fibrosis and connective tissue changes with typical features, as occurring in Crohn’s disease. Colonic gene expression analysis revealed unique expression profiles in chronic colitis compared to acute colitis and after additional recovery, pointing to potential new targets to intervene with the induction of fibrosis. In vivo T2 relaxometry is a promising non-invasive assessment of inflammation and fibrosis.  相似文献   
96.
Main subject of the reported investigation is the question in which way the acquisition of a conditional discrimination is modified on the one hand by the kind of objects presented, on the other hand by early experience. 40 newly hatched chickens grew up either with all the wooden eggs or cubes used for training and test, or without these objects, or in a ‘natural’ (enriched) environment. The results prove an influence of the kind of objects — cubes are discriminated twice or three times as fast as wooden eggs — but no effects of the different environments on acquisition (number of trials for reaching learning criterion). Results are discussed under aspects of species-specific constraints on learning.  相似文献   
97.
98.
99.
Experiments were carried out to evaluate the fractionation of proteins and peptides according to mass. Model mixtures were separated by either reversed-phase or ion-exchange chromatography with mass spectrometry-compatible mobile phase additives. Fraction collection was triggered by the mass/charge ratio of each one of the components of the mixture. Chromatography was additionally monitored with a UV-Vis detector in order to compare the new technique with generally accepted in separations. The results indicated that adequate purification is achieved by this new technique. Fraction collection triggered by changes in the mass/charge ratio reduces sample handling and analysis time. This study demonstrates the utility of mass-directed fractionation of peptides and proteins when mass spectrometry-compatible mobile phase additives are used.  相似文献   
100.
Autophagy is an intracellular trafficking pathway sequestering cytoplasm and delivering excess and damaged cargo to the vacuole for degradation. The Atg1/ULK1 kinase is an essential component of the core autophagy machinery possibly activated by binding to Atg13 upon starvation. Indeed, we found that Atg13 directly binds Atg1, and specific Atg13 mutations abolishing this interaction interfere with Atg1 function in vivo. Surprisingly, Atg13 binding to Atg1 is constitutive and not altered by nutrient conditions or treatment with the Target of rapamycin complex 1 (TORC1)-inhibitor rapamycin. We identify Atg8 as a novel regulator of Atg1/ULK1, which directly binds Atg1/ULK1 in a LC3-interaction region (LIR)-dependent manner. Molecular analysis revealed that Atg13 and Atg8 cooperate at different steps to regulate Atg1 function. Atg8 targets Atg1/ULK1 to autophagosomes, where it may promote autophagosome maturation and/or fusion with vacuoles/lysosomes. Moreover, Atg8 binding triggers vacuolar degradation of the Atg1-Atg13 complex in yeast, thereby coupling Atg1 activity to autophagic flux. Together, these findings define a conserved step in autophagy regulation in yeast and mammals and expand the known functions of LIR-dependent Atg8 targets to include spatial regulation of the Atg1/ULK1 kinase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号