首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2906篇
  免费   237篇
  3143篇
  2023年   7篇
  2022年   24篇
  2021年   48篇
  2020年   30篇
  2019年   43篇
  2018年   50篇
  2017年   54篇
  2016年   67篇
  2015年   112篇
  2014年   139篇
  2013年   160篇
  2012年   194篇
  2011年   224篇
  2010年   123篇
  2009年   151篇
  2008年   169篇
  2007年   201篇
  2006年   171篇
  2005年   179篇
  2004年   164篇
  2003年   160篇
  2002年   151篇
  2001年   40篇
  2000年   23篇
  1999年   30篇
  1998年   44篇
  1997年   31篇
  1996年   23篇
  1995年   41篇
  1994年   27篇
  1993年   32篇
  1992年   18篇
  1991年   24篇
  1990年   27篇
  1989年   21篇
  1988年   20篇
  1987年   9篇
  1986年   12篇
  1985年   7篇
  1984年   11篇
  1982年   12篇
  1981年   9篇
  1980年   9篇
  1978年   5篇
  1977年   5篇
  1976年   7篇
  1975年   4篇
  1971年   4篇
  1970年   7篇
  1968年   3篇
排序方式: 共有3143条查询结果,搜索用时 15 毫秒
991.
Creatine kinase isoenzymes are very susceptible to free radical damage and are inactivated by superoxide radicals and peroxynitrite. In this study, we have analyzed the effects of peroxynitrite on enzymatic activity and octamer stability of the two human mitochondrial isoenzymes (ubiquitous mitochondrial creatine kinase (uMtCK) and sarcomeric mitochondrial creatine kinase (sMtCK)), as well as of chicken sMtCK, and identified the involved residues. Inactivation by peroxynitrite was concentration-dependent and similar for both types of MtCK isoenzymes. Because peroxynitrite did not lower the residual activity of a sMtCK mutant missing the active site cysteine (C278G), oxidation of this residue is sufficient to explain MtCK inactivation. Mass spectrometric analysis confirmed oxidation of Cys-278 and further revealed oxidation of the C-terminal Cys-358, possibly involved in MtCK/membrane interaction. Peroxynitrite also led to concentration-dependent dissociation of MtCK octamers into dimers. In this study, ubiquitous uMtCK was much more stable than sarcomeric sMtCK. Mass spectrometric analysis revealed chemical modifications in peptide Gly-263-Arg-271 located at the dimer/dimer interface, including oxidation of Met-267 and nitration of Trp-268 and/or Trp-264, the latter being a very critical residue for octamer stability. These data demonstrate that peroxynitrite affects the octameric state of MtCK and confirms human sMtCK as the generally more susceptible isoenzyme. The results provide a molecular explanation of how oxidative damage can lead to inactivation and decreased octamer/dimer ratio of MtCK, as seen in neurodegenerative diseases and heart pathology, respectively.  相似文献   
992.
Upon infection with necrotizing pathogens many plants develop an enhanced resistance to further pathogen attack also in the uninoculated organs. This type of enhanced resistance is referred to as systemic acquired resistance (SAR). In the SAR state, plants are primed (sensitized) to more quickly and more effectively activate defense responses the second time they encounter pathogen attack. Since SAR depends on the ability to access past experience, acquired disease resistance is a paradigm for the existence of a form of “plant memory”. Although the phenomenon has been known since the beginning of the 20th century, major progress in the understanding of SAR was made over the past sixteen years. This review covers the current knowledge of molecular, biochemical and physiological mechanisms that are associated with SAR.Key Words: Arabidopsis, benzothiadiazole, defense response potentiation, 2,6-dichloroisonicotinic acid, elicitor, MAP kinase, parsley cell culture, priming, salicylic acid, sensitization  相似文献   
993.
Pelodiscus is one of the most widely distributed genera of softshell turtles, ranging from south-eastern Siberia and Korea over central and southern China to Vietnam. Economically, Pelodiscus are the most important chelonians of the world and have been bred and traded in high numbers for centuries, resulting in many populations established outside their native range. Currently, more than 300 million turtles per year are sold in China alone, and the bulk of this figure comprises farmed Pelodiscus. Due to easy availability, Pelodiscus also constitutes a model organism for physiological and embryological investigations. Yet, diversity and taxonomy of Pelodiscus are poorly understood and a comprehensive investigation using molecular tools has never been published. Traditionally, all populations were assigned to the species P. sinensis (Wiegmann, 1834); in recent years up to three additional species have been recognized by a few authors, while others have continued to accept only P. sinensis. In the present study, we use trade specimens and known-locality samples from Siberia, China, and Vietnam, analyze 2,419 bp of mtDNA and a 565-bp-long fragment of the nuclear C-mos gene to elucidate genetic diversity, and compare our data with sequences available from GenBank. Our findings provide evidence for the existence of at least seven distinct genetic lineages and suggest interbreeding in commercial turtle farms. GenBank sequences assigned to P. axenaria (Zhou, Zhang & Fang, 1991) are highly distinct. The validity of P. maackii (Brandt, 1857) from the northernmost part of the genus’ range is confirmed, whereas it is unclear which names should be applied to several taxa occurring in the central and southern parts of the range. The diversity of Pelodiscus calls for caution when such turtles are used as model organisms, because the respective involvement of more than a single taxon could lead to irreproducible and contradictory results. Moreover, our findings reveal the need for a new assessment of the conservation status of Pelodiscus. While currently all taxa are subsumed under ‘P. sinensis’ and listed as ‘vulnerable’ by the IUCN Red List of Threatened Species, some could actually be endangered or even critically endangered.  相似文献   
994.
One way to elucidate whether ammonium could act as a nitrogen (N) source delivered by the fungus in ectomycorrhizal symbiosis is to investigate plant ammonium importers. Expression analysis of a high-affinity ammonium importer from Populus tremulax tremuloides (PttAMT1.2) and of known members of the AMT1 gene family from Populus trichocarpa was performed. In addition, PttAMT1.2 function was studied in detail by heterologous expression in yeast. PttAMT1.2 expression proved to be root-specific, affected by N nutrition, and strongly increased in a N-independent manner upon ectomycorrhiza formation. The corresponding protein had a K(M) value for ammonium of c. 52 microm. From the seven members of the AMT1 gene family, one gene was exclusively expressed in roots while four genes were detectable in all poplar organs but with varying degrees of expression. Ectomycorrhiza formation resulted in a strong upregulation of three of these genes. Our results indicate an increased ammonium uptake capacity of mycorrhized poplar roots and suggest, together with the expression of putative ammonium exporter genes in the ectomycorrhizal fungus Amanita muscaria, that ammonium could be a major N source delivered from the fungus towards the plant in symbiosis.  相似文献   
995.
Methane-forming archaea are strictly anaerobic microbes and are essential for global carbon fluxes since they perform the terminal step in breakdown of organic matter in the absence of oxygen. Major part of methane produced in nature derives from the methyl group of acetate. Only members of the genera Methanosarcina and Methanosaeta are able to use this substrate for methane formation and growth. Since the free energy change coupled to methanogenesis from acetate is only − 36 kJ/mol CH4, aceticlastic methanogens developed efficient energy-conserving systems to handle this thermodynamic limitation. The membrane bound electron transport system of aceticlastic methanogens is a complex branched respiratory chain that can accept electrons from hydrogen, reduced coenzyme F420 or reduced ferredoxin. The terminal electron acceptor of this anaerobic respiration is a mixed disulfide composed of coenzyme M and coenzyme B. Reduced ferredoxin has an important function under aceticlastic growth conditions and novel and well-established membrane complexes oxidizing ferredoxin will be discussed in depth. Membrane bound electron transport is connected to energy conservation by proton or sodium ion translocating enzymes (F420H2 dehydrogenase, Rnf complex, Ech hydrogenase, methanophenazine-reducing hydrogenase and heterodisulfide reductase). The resulting electrochemical ion gradient constitutes the driving force for adenosine triphosphate synthesis. Methanogenesis, electron transport, and the structure of key enzymes are discussed in this review leading to a concept of how aceticlastic methanogens make a living. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   
996.
997.
Strategies for non-invasive and quantitative imaging of gene expression in vivo have been developed over the past decade. Non-invasive assessment of the dynamics of gene regulation is of interest for the detection of endogenous disease-specific biological alterations (e.g., signal transduction) and for monitoring the induction and regulation of therapeutic genes (e.g., gene therapy). To demonstrate that non-invasive imaging of regulated expression of any type of gene after in vivo transduction by versatile vectors is feasible, we generated regulatable herpes simplex virus type 1 (HSV-1) amplicon vectors carrying hormone (mifepristone) or antibiotic (tetracycline) regulated promoters driving the proportional co-expression of two marker genes. Regulated gene expression was monitored by fluorescence microscopy in culture and by positron emission tomography (PET) or bioluminescence (BLI) in vivo. The induction levels evaluated in glioma models varied depending on the dose of inductor. With fluorescence microscopy and BLI being the tools for assessing gene expression in culture and animal models, and with PET being the technology for possible application in humans, the generated vectors may serve to non-invasively monitor the dynamics of any gene of interest which is proportionally co-expressed with the respective imaging marker gene in research applications aiming towards translation into clinical application.  相似文献   
998.
999.
Microdissection of banded human chromosomes   总被引:6,自引:3,他引:6  
Summary Physical dissection of metaphase chromosomes is the most straightforward approach for the isolation of DNA sequences from specific chromosome regions. However, conventional microdissection techniques are too crude and inefficient for analysis of the human genome. Here we describe a technique for the precise dissection of single bands from GTG-banded chromosomes. Cells from normal amniotic fluid cell cultures are harvested by the pipette method. Microdissection is performed on an inverted microscope (magnification 1250 x) with the help of extended siliconized glass needles and an electronically controlled micromanipulator. Enzymatic amplification of the dissected DNA allows the construction of band-specific DNA libraries from as few as 20 dissected chromosome fragments.  相似文献   
1000.
Using up to 2117 bp of mitochondrial DNA and up to 2012 bp of nuclear DNA, we analysed phylogeographic differentiation of six widely distributed species of African hinged terrapins (Pelusios spp.) representing different habitat types. Two taxa each live in savannahs or in forests and mesic savannahs, respectively, and the remaining two species occur in intermediate habitats. The species living in forests and mesic savannahs do not enter dry savannahs, whereas the savannah species may occur in dry and wet savannahs and even in semi‐arid steppe regions. We found no obvious correlation between habitat type and phylogeographic pattern: one savannah species (P. rhodesianus) shows phylogeographic structure, i.e. pronounced genetic differences among geographically distinct populations, and the other (P. nanus) not. One species inhabiting forests and mesic savannahs (P. carinatus) has phylogeographic structure, the other (P. gabonensis) not. The same pattern is true for the two ecologically intermediate species, with phylogeographic structure present in P. castaneus and absent in P. chapini. Nuclear evidence suggests that the latter two taxa with abutting and partially overlapping ranges are distinct, while mtDNA is only weakly differentiated. Pelusios castaneus shows pronounced phylogeographic structure, which could reflect Pleistocene range interruptions correlated with the fluctuating forest cover in West and Central Africa. Our results do not support the recognition of an extinct subspecies of P. castaneus for the Seychelles. Pelusios carinatus contains two well supported clades, which are separated by the Congo River. This species is closely related to P. rhodesianus, a taxon consisting of two deeply divergent mitochondrial clades. One of these clades is paraphyletic with respect to P. carinatus, but the two clades of P. rhodesianus are not differentiated in the studied nuclear markers and, again, paraphyletic with respect to P. carinatus. Using mtDNA sequences from the type material of P. rhodesianus, we were able to allocate this name to one of the two clades. However, owing to the confusing relationships of P. rhodesianus and P. carinatus, we refrain from taxonomic decisions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号