首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2915篇
  免费   240篇
  3155篇
  2023年   7篇
  2022年   24篇
  2021年   48篇
  2020年   30篇
  2019年   43篇
  2018年   50篇
  2017年   54篇
  2016年   67篇
  2015年   113篇
  2014年   139篇
  2013年   160篇
  2012年   194篇
  2011年   225篇
  2010年   123篇
  2009年   151篇
  2008年   169篇
  2007年   201篇
  2006年   171篇
  2005年   179篇
  2004年   165篇
  2003年   160篇
  2002年   151篇
  2001年   40篇
  2000年   24篇
  1999年   30篇
  1998年   44篇
  1997年   32篇
  1996年   24篇
  1995年   42篇
  1994年   27篇
  1993年   32篇
  1992年   18篇
  1991年   25篇
  1990年   27篇
  1989年   22篇
  1988年   20篇
  1987年   9篇
  1986年   13篇
  1985年   7篇
  1984年   11篇
  1982年   12篇
  1981年   9篇
  1980年   9篇
  1978年   5篇
  1977年   7篇
  1976年   7篇
  1975年   4篇
  1971年   4篇
  1970年   7篇
  1968年   3篇
排序方式: 共有3155条查询结果,搜索用时 15 毫秒
991.
The precursor protein receptor at the chloroplast outer membrane atToc33 is a GTPase, which can be inactivated by phosphorylation in vitro, being arrested in the GDP loaded state. To assess the physiological function of phosphorylation, attoc33 knock out mutants were complemented with a mutated construct mimicking the constitutively phosphorylated state. Our data suggest that the reduced functionality of the mutant protein can be compensated by its upregulation. Chloroplast biogenesis and photosynthetic activity are impaired in the mutants during the early developmental stage, which is consistent with the requirement of atToc33 in young photosynthetic tissues.  相似文献   
992.
Powdery mildew on cherry bark oak (Quercus falcate var. pagodifolia) collected in Tennessee, USA, was determined to be Erysiphe abbreviata, a species confined to North America. The diagnostically important anamorph of this species is described for the first time. Sequence analyses of the rDNA ITS region and D1/D2 domains of the 28S rDNA were used to obtain phylogenetic data for and taxonomic conclusions about this species. The structure of the anamorph (Oidium subgen. Pseudoidium) and the molecular data support the placement of this species in Erysiphe emend. (including Microsphaera) as a species separate from the Eurasian Erysiphe alphitoides.  相似文献   
993.
San San Lin  Ahmad Saleh  Uwe Groß 《BBA》2008,1777(11):1455-1462
The apicomplexan parasite Toxoplasma gondii does not possess complex I of the mitochondrial respiratory chain, but has two genes encoding rotenone-insensitive, non-proton pumping type-II NADH dehydrogenases (NDH2s). The absence of such “alternative” NADH dehydrogenases in the human host defines these enzymes as potential drug targets. TgNDH2-I and TgNDH2-II are constitutively expressed in tachyzoites and bradyzoites and are localized to the mitochondrion as shown by epitope tagging. Functional expression of TgNDH2-I in the yeast Yarrowia lipolytica as an internal enzyme, with the active site facing the mitochondrial matrix, permitted growth in the presence of the complex I inhibitor DQA. Bisubstrate kinetics of TgNDH2-I measured within Y. lipolytica mitochondrial membrane preparations were in accordance with a ping-pong mechanism. Using inhibition kinetics we demonstrate here that 1-hydroxy-2-alkyl-4(1)quinolones with long alkyl chains of C12 (HDQ) and C14 are high affinity inhibitors for TgNDH2-I, while compounds with shorter side chains (C5 and C6) displayed significantly higher IC50 values. The efficiency of the various quinolone derivatives to inhibit TgNDH2-I enzyme activity mirrors their inhibitory potency in vivo, suggesting that a long acyl site chain is critical for the inhibitory potential of these compounds.  相似文献   
994.
The interaction between the c(11)ring and the gammaepsilon complex, forming the rotor of the Ilyobacter tartaricus ATP synthase, was probed by surface plasmon resonance spectroscopy and in vitro reconstitution analysis. The results provide, for the first time, a direct and quantitative assessment of the stability of the rotor. The data indicated very tight binding between the c(11)ring and the gammaepsilon complex, with an apparent K(d) value of approximately 7.4nm. The rotor assembly was primarily dependent on the interaction of the cring with the gammasubunit, and binding of the cring to the free epsilon subunit was not observed. Mutagenesis of selected conserved amino acid residues of all three rotor components (cR45, cQ46, gammaE204, gammaF203 and epsilonH38) severely affected rotor assembly. The interaction kinetics between the gammaepsilon complex and c(11)ring mutants suggested that the assembly of the c(11)gammaepsiloncomplex was governed by interactions of low and high affinity. Low-affinity binding was observed between the polar loops of the cring subunits and the bottom part of the gamma subunit. High-affinity interactions, involving the two residues gammaE204 and epsilonH38, stabilized the holo-c(11)gammaepsilon complex. NMR experiments indicated the acquisition of conformational order in otherwise flexible C- and N-terminal regions of the gamma subunit on rotor assembly. The results of this study suggest that docking of the central stalk of the F(1)complex to the rotor ring of F(o) to form tight, but reversible, contacts provides an explanation for the relative ease of dissociation and reconstitution of F(1)F(o)complexes.  相似文献   
995.
996.
The production of fuel ethanol from low‐cost lignocellulosic biomass currently suffers from several limitations. One of them is the presence of inhibitors in lignocellulosic hydrolysates that are released during pre‐treatment. These compounds inhibit growth and hamper the production of ethanol, thereby affecting process economics. To delineate the effects of such complex mixtures, we conducted a chemical analysis of four different real‐world lignocellulosic hydrolysates and determined their toxicological effect on yeast. By correlating the potential inhibitor abundance to the growth‐inhibiting properties of the corresponding hydrolysates, we identified furfural as an important contributor to hydrolysate toxicity for yeast. Subsequently, we conducted a targeted evolution experiment to improve growth behaviour of the half industrial Saccharomyces cerevisiae strain TMB3400 in the hydrolysates. After about 300 generations, representative clones from these evolved populations exhibited significantly reduced lag phases in medium containing the single inhibitor furfural, but also in hydrolysate‐supplemented medium. Furthermore, these strains were able to grow at concentrations of hydrolysates that effectively killed the parental strain and exhibited significantly improved bioconversion characteristics under industrially relevant conditions. The improved resistance of our evolved strains was based on their capacity to remain viable in a toxic environment during the prolonged, furfural induced lag phase.  相似文献   
997.
The effects of flooding on rhizospheric organic acid concentrations of three abundant flooding tolerant plant species (Alternanthera philoxeroides Mart., Arundinella anomala Steud., Salix variegata Franch.) from the water fluctuation zone of the Three Gorges Reservoir (TGR, Yangtze River) were investigated. Soil solution samples of eight low molecular weight organic acids were obtained from rhizotrons using micro suction cups during 3 weeks of waterlogging, after 6 weeks flooding and after a 1 week recovery. To estimate the contribution of water temperature and microbial community, plants in sterile glass bead substrate and original Yangtze sediment were submerged in laboratory at +10°, +20° and +30°C. Waterlogged plants did seldom express a significantly different pattern of rhizospheric organic acid (OA) composition compared to control plants. Flooding caused no burst of organic acid concentration in soil solution: All species express a silencing strategy. Average OA levels were higher in A. anomala rhizosphere than in the other two species, but increased again after resurfacing in all species. Temperature had a stronger influence in sediment than in sterile setup. In contrast to field measurements, succinate, malate and citrate were detected in the sterile setup. Microbial contribution appeared to have great influence on increasing OA occurrence.  相似文献   
998.
Many apicomplexan parasites, including Plasmodium falciparum, harbor a so-called apicoplast, a complex plastid of red algal origin which was gained by a secondary endosymbiotic event. The exact molecular mechanisms directing the transport of nuclear-encoded proteins to the apicoplast of P. falciparum are not well understood. Recently, in silico analyses revealed a second copy of proteins homologous to components of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) system in organisms with secondary plastids, including the malaria parasite P. falciparum. These proteins are predicted to be endowed with an apicoplast targeting signal and are suggested to play a role in the transport of nuclear-encoded proteins to the apicoplast. Here, we have studied components of this ERAD-derived putative preprotein translocon complex in malaria parasites. Using transfection technology coupled with fluorescence imaging techniques we can demonstrate that the N terminus of several ERAD-derived components targets green fluorescent protein to the apicoplast. Furthermore, we confirm that full-length PfsDer1-1 and PfsUba1 (homologues of yeast ERAD components) localize to the apicoplast, where PfsDer1-1 tightly associates with membranes. Conversely, PfhDer1-1 (a host-specific copy of the Der1-1 protein) localizes to the ER. Our data suggest that ERAD components have been “rewired” to provide a conduit for protein transport to the apicoplast. Our results are discussed in relation to the nature of the apicoplast protein transport machinery.The apicomplexan parasite Plasmodium falciparum is the etiological agent of malaria tropica, the most severe form of human malaria, responsible for over 250 million infections and 1 million deaths annually (61). Many apicomplexan parasites, including P. falciparum, harbor a so-called apicoplast, a complex plastid of red algal origin which was gained by a secondary endosymbiotic event (27, 58). Although during the course of evolution this plastid organelle has lost the ability to carry out photosynthesis, it is still the site of several important biochemical pathways, including isoprenoid and heme biosynthesis, and as such is essential for parasite survival (60). As in other plastids, the vast majority of genes originally encoded on the plastid genome have been transferred to the nucleus of the host. As a result, their gene products (predicted to constitute up to 10% of all nucleus-encoded proteins) must be imported back into the apicoplast (12). The apicoplast is surrounded by four membranes (55), and this protein import process thus represents a major cell biological challenge and has attracted much research interest, not least due to the importance of P. falciparum as a human pathogen (16, 50).The signals directing transport of nucleus-encoded proteins to complex plastids, including the apicomplexan apicoplast, have been studied in great detail in recent years, and reveal that such proteins are endowed with specific N-terminal targeting sequences, referred to as a bipartite topogenic signals (BTS), that direct their transport to this compartment (50). BTS are composed of an N-terminal endoplasmic reticulum (ER)-type signal sequence, which initially allows proteins to enter the secretory system via the Sec61 complex (59). Following this, proteins are carried via a Golgi complex-independent transport step to the second outermost membrane, from where they are then translocated across the remaining three apicoplast membranes, directed by the second part of the BTS, the transit peptide (51). Based on evolutionary considerations, it has long been suggested that transport across the inner two apicoplast membranes occurs via a Toc/Tic-like (where Toc and Tic are translocons of the outer and inner chloroplast envelopes, respectively) protein translocase machinery, and this is supported by a recent publication that provides evidence for an essential role of a Toxoplasma gondii Tic20 homologue in this transport process (50, 57). Despite this progress, it is still unclear how proteins travel across the second and third outer apicoplast membranes. Several models have been discussed to account for this transport step, including vesicular shuttle and translocon-based mechanisms (recently reviewed in reference 19), but until recently no actual molecular equipment had been found which could account for these membrane translocation events. To address this question, Sommer et al. screened the nucleomorph genome of the chromalveolate cryptophyte Guillardia theta (which, similar to P. falciparum, contains a four-membrane-bound plastid organelle) for genes encoding potential translocon-related proteins (49). Surprisingly, the authors identified genes encoding proteins usually involved in the ER-associated protein degradation pathway (ERAD), which recognizes incorrectly folded protein substrates and retrotranslocates them to the cell cytosol for degradation by the ubiquitin (Ub)-proteasome system (35, 44). As such, the ERAD system functions as a translocation complex, capable of transporting proteins across a biological membrane. Further characterization of one of these proteins (G. theta Der1-1, a homologue of yeast Der1p, a component of the ERAD system) provided strong evidence for a plastid localization. These data suggested an attractive solution to the mechanistic problem of transport across the second and third outermost membrane of complex plastids by hypothesizing a role for an ERAD-derived protein translocon complex. Intriguingly, this study also identified several members of this ERAD-derived translocon complex (apicoplast ERAD [apERAD]) in the nuclear genome of P. falciparum endowed with an N-terminal BTS (49). The BTS derived from one of these proteins, P. falciparum sDer1-1 [PfsDer1-1], was sufficient to direct transport of green fluorescent protein (GFP) to the apicoplast of P. falciparum, suggesting that this ERAD-like machinery is ubiquitous among chromalveolates with four membrane-bound plastids (49). In this current report we extend our study of the P. falciparum apERAD complex.  相似文献   
999.
Since the massive bloom in 1988 in the North Sea, the prymnesiophyte flagellate Chrysochromulina polylepis Manton et Parke has been known for its ichtyotoxicity. Laboratory experiments using two different clones of C. polylepis were conducted in a comparative approach. Both clones were nearly similar in size and shape, but differed in their toxicity, as demonstrated by the Artemia bioassay. In order to study the effects of toxic C. polylepis on protozooplankton grazers, grazing experiments were performed with the heterotrophic dinoflagellate Oxyrrhis marina Dujardin as grazer. A first experiment was carried out in order to follow batch culture growth and initial grazing of O. marina when fed toxic or non-toxic clones of C. polylepis. Ingestion of the toxic clone was 27% of ingestion when fed with the non-toxic clone. When O. marina was fed with the toxic clone, vacuoles within O. marina contained fewer food particles per cell and the cells attained slower division rate (58% of the division rate estimated for the non-toxic clone). A second experiment was conducted to determine the grazing and growth response of O. marina as a function of algal food concentration. Profound differences in ingestion, clearance, division and gross growth efficiency of O. marina when fed the two clones of C. polylepis again were apparent. However, even at algal concentrations of 400×103 ml−1, O. marina is not killed by the presence or by the ingestion of toxic C. polylepis, indicating that the toxin deters grazers. In addition to grazing experiments, lipid classes and fatty acids of both algal clones were analysed and compared in order to follow the hypothesis that toxicity of C. polylepis is caused by liposaccharides, lipids, or fatty acids. However, the chemical composition with respect to lipid classes and fatty acids of both clones were quite similar, making an involvement of these substances in the toxicity towards Artemia and O. marina unlikely.  相似文献   
1000.
The study reports lead concentrations and lead and strontium stable-isotope ratios in mandibular molars of roe deer from three different areas in western Germany. Lead concentrations in third molars ranged between 0.23 and 36.61 μg/g (dry weight). Comparing lead concentrations in first molars and third molars in a group of ca. 1.5- or ca. 2.5-year-old individuals from the same area revealed an effect of tooth age on tooth lead content. The higher lead concentrations in the first molars were attributed to the longer period of lead accumulation by the dentin of these teeth compared with the later-forming third molars. Differences in lead isotopic signatures of the teeth were observed between the three areas, presumably reflecting variation in exposure to different sources of environmental lead. We also found marked variation in the 87Sr/86Sr isotope ratios of the teeth, with only a small overlap in values between two of the areas. Strontium isotope analysis alone or in combination with lead isotope analyses can be a useful means of assessing the provenance of deer teeth of unknown geographical origin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号