首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2326篇
  免费   143篇
  国内免费   3篇
  2472篇
  2023年   16篇
  2022年   21篇
  2021年   37篇
  2020年   30篇
  2019年   32篇
  2018年   39篇
  2017年   30篇
  2016年   80篇
  2015年   113篇
  2014年   140篇
  2013年   162篇
  2012年   193篇
  2011年   210篇
  2010年   108篇
  2009年   103篇
  2008年   144篇
  2007年   153篇
  2006年   137篇
  2005年   127篇
  2004年   77篇
  2003年   111篇
  2002年   83篇
  2001年   7篇
  2000年   8篇
  1998年   20篇
  1997年   19篇
  1996年   10篇
  1995年   10篇
  1994年   8篇
  1993年   18篇
  1992年   14篇
  1991年   10篇
  1990年   12篇
  1989年   12篇
  1988年   12篇
  1987年   12篇
  1986年   12篇
  1985年   10篇
  1984年   9篇
  1983年   12篇
  1982年   12篇
  1981年   6篇
  1980年   10篇
  1979年   17篇
  1978年   11篇
  1977年   6篇
  1975年   6篇
  1972年   5篇
  1971年   5篇
  1969年   6篇
排序方式: 共有2472条查询结果,搜索用时 15 毫秒
41.
In this study, genome-wide expression analyses were used to study the response of Saccharomyces cerevisiae to stress throughout a 15-day wine fermentation. Forty per cent of the yeast genome significantly changed expression levels to mediate long-term adaptation to fermenting grape must. Among the genes that changed expression levels, a group of 223 genes was identified, which was designated as fermentation stress response (FSR) genes that were dramatically induced at various points during fermentation. FSR genes sustain high levels of induction up to the final time point and exhibited changes in expression levels ranging from four- to 80-fold. The FSR is novel; 62% of the genes involved have not been implicated in global stress responses and 28% of the FSR genes have no functional annotation. Genes involved in respiratory metabolism and gluconeogenesis were expressed during fermentation despite the presence of high concentrations of glucose. Ethanol, rather than nutrient depletion, seems to be responsible for entry of yeast cells into the stationary phase.  相似文献   
42.
Biodiversity can provide insurance against environmental change, but only if species differ in their response to environmental conditions (response diversity). Wild bees provide pollination services to wild and crop plants, and response diversity might insure this function against changing climate. To experimentally test the hypothesis that bee species differ in their response to increasing winter temperature, we stored cocoons of nine bee species at different temperatures during the winter (1.5–9.5 °C). Bee species differed significantly in their responses (weight loss, weight at emergence and emergence date). The developmental stage during the winter explained some of these differences. Bee species overwintering as adults generally showed decreased weight and earlier emergence with increasing temperature, whereas bee species overwintering in pre-imaginal stages showed weaker or even opposite responses. This means that winter warming will likely affect some bee species negatively by increasing energy expenditure, while others are less sensitive presumably due to different physiology. Likewise, species phenologies will respond differently to winter warming, potentially affecting plant–pollinator interactions. Responses are not independent of current flight periods: bees active in spring will likely show the strongest phenological advances. Taken together, wild bee diversity provides response diversity to climate change, which may be the basis for an insurance effect.  相似文献   
43.
1.  We recorded compensatory eye stalk movements in response to pitch and roll stimulation of the visual, statocyst, and leg-proprioceptive systems in different species of crabs (Carcinus maenas, Heloecius cordiformis, Pachygrapsus marmoratus) (Fig. 2).
2.  The relative contribution of visual, statocyst and leg-proprioceptive inputs to eye stabilization in space varies greatly among different species (Fig. 3).
3.  We suggest that for stabilizing the eyes in space, the contribution of various sensory inputs in different species of crabs correspond to the availability of cues in their habitat. Semiterrestrial crabs living in a habitat with well defined and predictable visual geometry stabilize their eye stalks mainly by visual cues. Crabs living on solid substrate make strong use of leg proprioceptive input. Swimming crabs, and other predominantly aquatic crabs, rely mainly on their statocysts.
  相似文献   
44.
Barley transformation mediated by Agrobacterium tumefaciens is routinely performed in a number of laboratories. However, elimination of selectable marker genes and formation of plants homozygous for the transgene via conventional segregation is laborious and time-consuming. Here we suggest a concept that includes the production of primary transgenic plants via infection of immature embryos with A. tumefaciens followed by androgenetic generation of a segregating population of entirely homozygous plants. Selectable marker-free, truebreeding plants carrying a single-opy transgene integrant may thus be efficiently and rapidly obtained. However, amenability to Agrobacterium-mediated transformation as well as androgenetic potential is genotype-dependent. Efficient genetic transformation by infection of immature embryos is so far confined to the spring type cultivar ‘Golden Promise’ which, however, turned out to be recalcitrant in pollen embryogenesis. To facilitate androgenetic generation of homozygous segregants from primary transformants, we have established a method for embryogenic pollen culture in cv. Golden Promise that includes conventional cold-treatment and subsequent preculture of immature pollen under starvation conditions prior to transfer to complete nutrient medium. Further we show that conditioning of the pollen culture medium by co-culture of immature wheat pistils as well as addition of pistil-preconditioned medium considerably support androgenetic development. Employment of the established method using immature pollen of primary transgenic plants demonstrates that selectable marker-free, true-breeding transgenic progeny can be rapidly obtained pursuing the concept proposed. The protocol presented will be useful in functional genomics as well as in molecular breeding approaches.  相似文献   
45.
Endothelial dysfunction leads to lethal vascular complications in diabetes and related metabolic disorders. Here, we demonstrate that de novo lipogenesis, an insulin-dependent process driven by the multifunctional enzyme fatty-acid synthase (FAS), maintains endothelial function by targeting endothelial nitric-oxide synthase (eNOS) to the plasma membrane. In mice with endothelial inactivation of FAS (FASTie mice), eNOS membrane content and activity were decreased. eNOS and FAS were physically associated; eNOS palmitoylation was decreased in FAS-deficient cells, and incorporation of labeled carbon into eNOS-associated palmitate was FAS-dependent. FASTie mice manifested a proinflammatory state reflected as increases in vascular permeability, endothelial inflammatory markers, leukocyte migration, and susceptibility to LPS-induced death that was reversed with an NO donor. FAS-deficient endothelial cells showed deficient migratory capacity, and angiogenesis was decreased in FASTie mice subjected to hindlimb ischemia. Insulin induced FAS in endothelial cells freshly isolated from humans, and eNOS palmitoylation was decreased in mice with insulin-deficient or insulin-resistant diabetes. Thus, disrupting eNOS bioavailability through impaired lipogenesis identifies a novel mechanism coordinating nutritional status and tissue repair that may contribute to diabetic vascular disease.  相似文献   
46.
47.
Escherichia coli is commonly used for recombinant protein production with many available host strains. Screening experiments are often performed in batch mode using shake flasks and evaluating only the final product concentration. This conventional approach carries the risk of missing the best strain due to limited monitoring capabilities. Thus, this study focuses on investigating the general suitability of online respiration measurement for selecting expression hosts for heterologous protein production. The oxygen transfer rate (OTR) for different T7‐RNA polymerase‐dependent Escherichia coli expression strains was compared under inducing and noninducing conditions. As model enzymes, a lipase A from Bacillus subtilis (BSLA) and a 3‐hydroxybutyryl‐CoA dehydrogenase from Thermus thermophilus (HBD) were chosen. Four strains were compared during expression of both enzymes in autoinduction medium. Additionally, four strains were compared during expression of the BSLA with IPTG induction. It was found that the metabolic burden during recombinant protein production induces a phase of constant OTR, while undisturbed cell growth with no or little product formation is indicated by an exponential increase. This pattern is independent of the host strain, expressed enzyme, and induction method. Furthermore, the OTR gives information about carbon source consumption, biomass formation, and the transition from production to noninduced second growth phase, thereby ensuring a fair comparison of different strains. In conclusion, online monitoring of the respiration activity is suited to qualitatively identify, if a recombinant protein is produced by a strain or not. Furthermore, laborious offline sampling is avoided. Thus, the technique is easier and faster compared to conventional approaches. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:315–327, 2018  相似文献   
48.
Summary A morphogenetic factor which induces inTriturus gastrula ectoderm tissues which are derived from mesoderm and endoderm has been extracted from chicken and amphibian embryos. The factor which is protein in nature has been obtained from chicken embryos in a highly purified state.The biological activity of the chicken factor is partially inhibited when the factor is combined with chicken DNA or sonicated chicken DNA.When the 3H-labelled factor is combined with sonicated DNA and then centrifuged on a sucrose gradient the factor migrates in part with the DNA. This indicates that the factor is bound to DNA.The inferences from these results are discussed with regard to the possible mechanism of action of the factor and the molecular mechanism of differentiation.  相似文献   
49.
Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG1, SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53.  相似文献   
50.
In this study, the effect of glycine receptor (GlyR) α3 alternative RNA splicing on the distribution of receptors in the membrane of human embryonic kidney 293 cells is investigated using optical super-resolution microscopy. Direct stochastic optical reconstruction microscopy is used to image both α3K and α3L splice variants individually and together using single- and dual-color imaging. Pair correlation analysis is used to extract quantitative measures from the resulting images. Autocorrelation analysis of the individually expressed variants reveals clustering of both variants, yet with differing properties. The cluster size is increased for α3L compared to α3K (mean radius 92 ± 4 and 56 ± 3 nm, respectively), yet an even bigger difference is found in the cluster density (9,870 ± 1,433 and 1,747 ± 200 μm?2, respectively). Furthermore, cross-correlation analysis revealed that upon co-expression, clusters colocalize on the same spatial scales as for individually expressed receptors (mean co-cluster radius 94 ± 6 nm). These results demonstrate that RNA splicing determines GlyR α3 membrane distribution, which has consequences for neuronal GlyR physiology and function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号