首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1657篇
  免费   124篇
  1781篇
  2023年   4篇
  2022年   17篇
  2021年   24篇
  2020年   31篇
  2019年   22篇
  2018年   28篇
  2017年   28篇
  2016年   51篇
  2015年   48篇
  2014年   62篇
  2013年   81篇
  2012年   143篇
  2011年   127篇
  2010年   71篇
  2009年   97篇
  2008年   88篇
  2007年   116篇
  2006年   105篇
  2005年   109篇
  2004年   91篇
  2003年   86篇
  2002年   68篇
  2001年   26篇
  2000年   8篇
  1999年   17篇
  1998年   23篇
  1997年   20篇
  1996年   11篇
  1995年   23篇
  1994年   17篇
  1993年   14篇
  1992年   8篇
  1991年   5篇
  1990年   9篇
  1989年   7篇
  1988年   5篇
  1987年   4篇
  1986年   4篇
  1985年   9篇
  1984年   8篇
  1983年   6篇
  1982年   4篇
  1981年   3篇
  1979年   4篇
  1977年   11篇
  1976年   7篇
  1975年   5篇
  1973年   4篇
  1972年   4篇
  1968年   3篇
排序方式: 共有1781条查询结果,搜索用时 0 毫秒
161.
Zusammenfassung Tryptophan steigert die Alkaloidbildung des Claviceps-Stammes SD 58, wenn es den Kulturen vor der Beimpfung oder in einem frühen Stadium zugesetzt wird, nicht jedoch bei späterem Zusatz. Den gleichen Effekt zeigen verschiedene Tryptophan-Analoga. Es handelt sich nicht um einen Nährstoff-Effekt, sondern wahrscheinlich um eine Beeinflussung von Enzymen des Alkaloidstoffwechsels. Obwohl man eine Hemmung des Alkaloidabbaus nicht ausschließen kann, vermuten wir eher, daß das Tryptophan als Induktor für Enzyme der Alkaloidsynthese wirkt. Als Arbeitshypothese wird angenommen, daß die Alkaloidbildung durch ein Nachlassen der Eiweißsynthese und eine damit verbundene Vergrößerung des Pools freier Aminosäuren ausgelöst wird, was dann zur induzeirten Synthese von Enzymen führt, die für die Alkaloidbildung erforderlich sind.  相似文献   
162.
Glucose kinase of Streptomyces coelicolor A3(2) is essential for glucose utilisation and is required for carbon catabolite repression (CCR) exerted through glucose and other carbon sources. The protein belongs to the ROK-family, which comprises bacterial sugar kinases and regulators. To better understand glucose kinase function, we have monitored the cellular activity and demonstrated that the choice of carbon sources did not significantly change the synthesis and activity of the enzyme. The DNA sequence of the Streptomyces lividans glucose kinase gene glkA was determined. The predicted gene product of 317 amino acids was found to be identical to S. coelicolor glucose kinase, suggesting a similar role for this protein in both organisms. A procedure was developed to produce pure histidine-tagged glucose kinase with a yield of approximately 10 mg/l culture. The protein was stable for several weeks and was used to raise polyclonal antibodies. Purified glucose kinase was used to explore protein-protein interaction by surface plasmon resonance. The experiments revealed the existence of a binding activity present in S. coelicolor cell extracts. This indicated that glucose kinase may interact with (an)other factor(s), most likely of protein nature. A possible cross-talk with proteins of the phosphotransferase system, which are involved in carbon catabolite repression in other bacteria, was investigated.  相似文献   
163.
The tallysomycins (TLMs) belong to the bleomycin (BLM) family of antitumor antibiotics. The BLM biosynthetic gene cluster has been cloned and characterized previously from Streptomyces verticillus ATCC 15003, but engineering BLM biosynthesis for novel analogs has been hampered by the lack of a genetic system for S. verticillus. We now report the cloning and sequencing of the TLM biosynthetic gene cluster from Streptoalloteichus hindustanus E465-94 ATCC 31158 and the development of a genetic system for S. hindustanus, demonstrating the feasibility to manipulate TLM biosynthesis in S. hindustanus by gene inactivation and mutant complementation. Sequence analysis of the cloned 80.2 kb region revealed 40 open reading frames (ORFs), 30 of which were assigned to the TLM biosynthetic gene cluster. The TLM gene cluster consists of nonribosomal peptide synthetase (NRPS) genes encoding nine NRPS modules, a polyketide synthase (PKS) gene encoding one PKS module, genes encoding seven enzymes for deoxysugar biosynthesis and attachment, as well as genes encoding other biosynthesis, resistance, and regulatory proteins. The involvement of the cloned gene cluster in TLM biosynthesis was confirmed by inactivating the tlmE glycosyltransferase gene to generate a TLM non-producing mutant and by restoring TLM production to the DeltatlmE::ermE mutant strain upon expressing a functional copy of tlmE. The TLM gene cluster is highly homologous to the BLM cluster, with 25 of the 30 ORFs identified within the two clusters exhibiting striking similarities. The structural similarities and differences between TLM and BLM were reflected remarkably well by the genes and their organization in their respective biosynthetic gene clusters.  相似文献   
164.
Thermoregulation behaviour in codling moth larvae   总被引:3,自引:1,他引:2  
Abstract. The thermoregulation behaviour of the codling moth, Cydia pomonella, is investigated in temperature gradient experiments with larvae feeding within apples, and with mature larvae searching for cocooning sites. Feeding larvae appear to prefer the apple hemisphere with a higher temperature (i.e. they build larger cavities in the radiated, warmer part of the fruit). The proportion of larval cavities in the warmer hemisphere is positively related to increasing apple temperature on that side, as well as to the temperature difference between the warm and the cool fruit hemisphere. The mechanism in feeding larvae can be termed as cryptic basking because, during microhabitat selection, the caterpillars exploit temperature differences that are caused explicitly by incident solar radiation. Fifth-instar larvae in search of cocooning sites show no temperature preference within the large gradient offered (9–29 °C), with no difference between males and females. During larval development, the insect changes its thermoregulation behaviour in response to a possible shift in benefits of an elevated body temperature with respect to environmental conditions. Both the thermoregulation behaviour and such a shift of behavioural response should be respected when simulating body temperatures of the species.  相似文献   
165.
Sex assignment of patients with disorders of somatosexual differentiation is a controversial topic. The aim is to enable the patient to develop a stable gender identity during childhood, adolescence and adulthood. Enormous advances have recently been made in our knowledge of the molecular mechanisms of sexual differentiation and it is understood that long-term outcome may depend on the underlying diagnosis. There is increasing evidence that genital development is dependent on the action of androgenic steroids; moreover, both androgens and oestrogens may have an impact on other developing organs including neuronal structures such as the brain. Long-term outcome studies on the various intersexuality disorders are desperately needed in order to establish a basis for evidence-based medicine regarding sex assignment and treatment options. Premature decisions leading to irreversible interventions before an accurate diagnosis has been established must be avoided.  相似文献   
166.
We have investigated the co-assembly properties of the intermediate filament (IF) proteins vimentin and desmin. First, the soluble complexes formed by both proteins separately in 5 mM Tris-HCl, pH 8.4, were characterized by analytical ultracentrifugation. In both cases, s-values of around 5 S were obtained corresponding to the formation of tetramers. However, at pH 7.5 and in the presence of 1 mM EDTA, both proteins behaved quite differently; whereas vimentin sedimented at 7.2 S, desmin assembled into much larger complexes of about 13 S. A mixture of equimolar amounts of vimentin and desmin in 8 M urea yielded, after reconstitution into 5 mM Tris-HCl, pH 7.5, and 1 mM EDTA, complexes exhibiting a sharp peak at 10.9 S. This intermediate s-value indicated that co-assembly into a distinct new set of complexes had occurred. As judged by electron microscopy and viscometry, these mixtures assembled into IFs with characteristics similar to those of pure vimentin and desmin. Furthermore, when vimentin and desmin tetramers were mixed in 5 mM Tris-HCl, pH 8.4, and subsequently subjected to IF assembly conditions, again "hybrid" filaments were obtained. Most interestingly, after 10 min of assembly, mass-per-length (MPL) measurements by scanning transmission electron microscopy yielded IFs with an MPL-peak value of 36 +/- 5 kDa/nm, hence closer to that of vimentin IFs (33 +/- 4 kDa/nm) than to that of desmin IFs (48 +/- 8 kDa/nm). Finally, when unit length-filaments (ULF) of vimentin and desmin were mixed and assembled further, the diameters of individual mature IFs formed exhibited a significantly higher degree of width inhomogeneity along their length than vimentin and desmin IFs as might be expected for a modular mode of assembly. Last but not least, atomic force microscopy provided further direct evidence that desmin IFs are able to fuse end-to-end with vimentin IFs. In summary, we have shown that vimentin and desmin are able to co-assemble at the dimer, tetramer, ULF and even the mature IF level.  相似文献   
167.
Pseudomonas aeruginosa and species of the Burkholderia cepacia complex are the primary bacterial pathogens contributing to lung disease in patients with cystic fibrosis. Quorum sensing systems using N-acyl homoserine lactone (AHL) signal molecules are involved in the regulation of a number of virulence factors in these species. Extracts of mucopurulent respiratory secretions from 13 cystic fibrosis patients infected with P. aeruginosa and/or strains of the B. cepacia complex were fractionated using reverse-phase fast pressure liquid chromatography and analyzed for the presence of AHLs using a traI-luxCDABE-based reporter that responds to AHLs with acyl chains ranging between 4 and 12 carbons. Using this assay system, a broad range of AHLs were detected and identified despite being present at low concentrations in limited sample volumes. N-(3-oxo-dodecanoyl)-l-homoserine lactone, N-(3-oxo-decanoyl)-l-homoserine lactone and N-octanoyl-l-homoserine lactone (OHL) were the AHLs most frequently identified. OHL and N-decanoyl-l-homoserine lactone were detected in nanomolar concentrations compared to picomolar amounts of the 3-oxo-derivatives of the AHLs identified.  相似文献   
168.
Normal neurological function depends on a constant supply of polyunsaturated fatty acids to the brain. A considerable proportion of essential fatty acids originates from lipoprotein-associated lipids that undergo uptake and/or catabolism at the blood-brain barrier (BBB). This study aimed at identifying expression and regulation of endothelial lipase (EL) in brain capillary endothelial cells (BCEC), major constituents of the BBB. Our results revealed that BCEC are capable of EL synthesis and secretion. Overexpression of EL resulted in enhanced hydrolysis of extracellular high-density lipoprotein (HDL)-associated sn-2-labeled [(14)C]20 : 4 phosphatidylcholine. [(14)C]20 : 4 was recovered in cellular lipids, indicating re-uptake and intracellular re-esterification. To investigate local regulation of EL in the cerebrovasculature, BCEC were cultured in the presence of peroxisome-proliferator activated receptor (PPAR)- and liver X receptor (LXR)-agonists, known to regulate HDL levels. These experiments revealed that 24(S)OH-cholesterol (a LXR agonist), bezafibrate (a PPARalpha agonist), or pioglitazone (a PPARgamma agonist) resulted in down-regulation of EL mRNA and protein levels. Our findings implicate that EL could generate fatty acids at the BBB for transport to deeper regions of the brain as building blocks for membrane phospholipids. In addition PPAR and LXR agonists appear to contribute to HDL homeostasis at the BBB by regulating EL expression.  相似文献   
169.
Ebola virus causes severe hemorrhagic fever with high mortality rates in humans and nonhuman primates. Vascular instability and dysregulation are disease-decisive symptoms during severe infection. While the transmembrane glycoprotein GP(1,2) has been shown to cause endothelial cell destruction, the role of the soluble glycoproteins in pathogenesis is largely unknown; however, they are hypothesized to be of biological relevance in terms of target cell activation and/or increase of endothelial permeability. Here we show that virus-like particles (VLPs) consisting of the Ebola virus matrix protein VP40 and GP(1,2) were able to activate endothelial cells and induce a decrease in barrier function as determined by impedance spectroscopy and hydraulic conductivity measurements. In contrast, the soluble glycoproteins sGP and delta-peptide did not activate endothelial cells or change the endothelial barrier function. The VLP-induced decrease in barrier function was further enhanced by the cytokine tumor necrosis factor alpha (TNF-alpha), which is known to induce a long-lasting decrease in endothelial cell barrier function and is hypothesized to play a key role in Ebola virus pathogenesis. Surprisingly, sGP, but not delta-peptide, induced a recovery of endothelial barrier function following treatment with TNF-alpha. Our results demonstrate that Ebola virus GP(1,2) in its particle-associated form mediates endothelial cell activation and a decrease in endothelial cell barrier function. Furthermore, sGP, the major soluble glycoprotein of Ebola virus, seems to possess an anti-inflammatory role by protecting the endothelial cell barrier function.  相似文献   
170.
Storage protein synthesis is dependent on available nitrogen in the seed, which may be controlled by amino acid import via specific transporters. To analyze their rate-limiting role for seed protein synthesis, a Vicia faba amino acid permease, VfAAP1, has been ectopically expressed in pea (Pisum sativum) and Vicia narbonensis seeds under the control of the legumin B4 promoter. In mature seeds, starch is unchanged but total nitrogen is 10% to 25% higher, which affects mainly globulin, vicilin, and legumin, rather than albumin synthesis. Transgenic seeds in vitro take up more [14C]-glutamine, indicating increased sink strength for amino acids. In addition, more [14C] is partitioned into proteins. Levels of total free amino acids in growing seeds are unchanged but with a shift toward higher relative abundance of asparagine, aspartate, glutamine, and glutamate. Hexoses are decreased, whereas metabolites of glycolysis and the tricarboxylic acid cycle are unchanged or slightly lower. Phosphoenolpyruvate carboxylase activity and the phosphoenolpyruvate carboxylase-to-pyruvate kinase ratios are higher in seeds of one and three lines, indicating increased anaplerotic fluxes. Increases of individual seed size by 20% to 30% and of vegetative biomass indicate growth responses probably due to improved nitrogen status. However, seed yield per plant was not altered. Root application of [15N] ammonia results in significantly higher label in transgenic seeds, as well as in stems and pods, and indicates stimulation of nitrogen root uptake. In summary, VfAAP1 expression increases seed sink strength for nitrogen, improves plant nitrogen status, and leads to higher seed protein. We conclude that seed protein synthesis is nitrogen limited and that seed uptake activity for nitrogen is rate limiting for storage protein synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号