首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   681篇
  免费   56篇
  737篇
  2023年   4篇
  2021年   10篇
  2019年   10篇
  2018年   6篇
  2017年   9篇
  2016年   17篇
  2015年   28篇
  2014年   25篇
  2013年   41篇
  2012年   45篇
  2011年   35篇
  2010年   32篇
  2009年   17篇
  2008年   52篇
  2007年   54篇
  2006年   44篇
  2005年   39篇
  2004年   24篇
  2003年   25篇
  2002年   30篇
  2001年   6篇
  2000年   9篇
  1999年   10篇
  1998年   13篇
  1997年   10篇
  1996年   3篇
  1995年   8篇
  1994年   4篇
  1993年   5篇
  1992年   12篇
  1991年   7篇
  1990年   4篇
  1989年   3篇
  1988年   10篇
  1986年   6篇
  1985年   5篇
  1984年   5篇
  1982年   5篇
  1981年   5篇
  1980年   7篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1975年   4篇
  1973年   3篇
  1972年   5篇
  1968年   4篇
  1967年   4篇
  1965年   3篇
排序方式: 共有737条查询结果,搜索用时 0 毫秒
21.
Diminished synthesis of the neurotransmitter serotonin (5-HT) in the brain has been linked to disturbed memory processes. The present study investigated the effects of diminished central nervous 5-HT synthesis as achieved by an acute dietary tryptophan depletion (ATD) on verbal declarative episodic memory in young women while controlling for the effects of female sex hormones. Eighteen healthy females (aged 20–31 years) participated in a within-subject repeated measures study, with two separate days of assessment spaced at least one individual menstrual cycle apart. On one day, participants were subjected to ATD, thus lowering central nervous 5-HT synthesis. The other day participants received a tryptophan-balanced amino acid load (BAL = control condition). The study was randomized, counterbalanced and double blind in terms of ATD/BAL administration. Measurements took place in the early follicular phase of the participants’ menstrual cycle. Estrogen, FSH and LH levels were assessed at baseline. Verbal declarative episodic memory was assessed using a structured word-learning task. Short-term memory, as indexed by immediate recall, was reduced after ATD intake, whereas delayed recall and recognition after a 25-min delay did not show any differences after intake of ATD or BAL. In young women, verbal short-term memory function was more vulnerable to ATD than consolidation processes. In light of the possible interplay between female sex hormones and 5-HT, further studies comparing different menstrual cycle phases are needed.  相似文献   
22.
23.

Introduction

The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial.

Methods

Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice.

Results

Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-.

Conclusion

Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.  相似文献   
24.
25.
Separation of the heterogeneous lignin macromolecule in fractions with increased homogeneity, as well as different structural (molar mass) and functional (hydroxy groups, ‐OH) features is important in terms of its use as a chemical building block. For this purpose, three thermal separation techniques were investigated and compared: solvent extraction, successive precipitation and ultrafiltration. One important issue in this context is the utilization of organic solvents with low boiling points to ensure a simple and efficient recovery. In addition to a softwood Kraft lignin (Indulin AT) as reference lignin, two sulfur‐free Organosolv lignins from short rotation coppice (“poplar with bark”) and from the energy grass Miscanthus × gigantheus were investigated. The lignins were separated into low, medium and high molecular weight fractions. Due to the different initial structural features and the associated varying solubility properties in such lignins, different organic solvents were needed for dissolution and precipitation of the individual lignin fractions. The polarity of the used solvent is one key factor regarding the yield of the soluble fraction and the success of molecular sorting into low, medium, and high molecular weight. Further structural features, for example the aliphatic OH‐group content increased with rising molecular weight of poplar, miscanthus, and Kraft lignin from minimum 0.72, 0.3, and 1.6 mmol/g to maximum 2.4, 1.6, and 2.8 mmol/g, respectively. The number of phenolic OH‐groups decreased from maximum 3.8, 4.3, and 4.2 to minimum 1.4, 2.7, and 2.9, respectively. The presented work illustrate options regarding the molecular sorting of several lignin types with three thermal techniques into fractions differing in key properties (yield, molecular weight, polydispersity, functional groups) for material applications.  相似文献   
26.
Previous studies have shown that dinoflagellates with different plastid ancestries have distinct differences in the fatty acid compositions and regiochemistries of their chloroplast-associated galactolipids, mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively), thus reflecting plastid origin as a major factor in plastid membrane composition. Specifically, dinoflagellates with aberrant plastids (e.g. Karenia brevis, Kryptoperidinium foliaceum and Lepidodinium chlorophorum) possess certain MGDG- and DGDG-associated fatty acids which are not found in peridinin-containing dinoflagellates (the largest group of photosynthetic dinoflagellates with a red algal plastid ancestry which is thought to be an evolutionary precursor to aberrant plastids), but which are common to other algal groups. For example, hexadecatetraenoic acid (16:4(n-3)) is common to green algae and is found in the MGDG and DGDG of L. chlorophorum, which agrees with its green algal plastid ancestry, while hexadecatrienoic acid (16:3) and hexadecadienoic acid (16:2) are found in the MGDG and DGDG of K. foliaceum, which agrees with its diatom plastid ancestry. Notably, 16:4 has been found by others in the total fatty acids and galactolipids of Karenia mikimotoi, but in no other examined members of the Kareniaceae (all of which have plastids of haptophyte origin). However, these findings lack information as to the regiochemistry of 16:4. We have utilized positive-ion electrospray ionization/mass spectrometry (ESI/MS) and ESI/MS/MS to demonstrate that 16:4, which aside from L. chlorophorum is not found conclusively in the MGDG and DGDG of any other dinoflagellates examined to date irrespective of plastid ancestry, is found in K. mikimotoi as 18:5/16:4 (sn-1/sn-2 regiochemistry) MGDG and DGDG, and that its presence is not modulated (i.e. does not become more saturated) with an increase in growth temperature. Considering an aberrant pigment composition as described by others, we present a perspective where galactolipid-associated 16:4 in K. mikimotoi indicates a plastid ancestry more convoluted than for other members of the Kareniaceae.  相似文献   
27.
The amyloid precursor protein (APP) and its pathogenic by-product amyloid-beta protein (Abeta) play central roles in Alzheimer disease (AD) neuropathogenesis. APP can be cleaved by beta-secretase (BACE) and alpha-secretase to produce APP-C99 and APP-C83. These C-terminal fragments can then be cleaved by gamma-secretase to produce Abeta and p3, respectively. p3 has been reported to promote apoptosis, and Abeta is the key component of senile plaques in AD brain. APP adaptor proteins with phosphotyrosine-binding domains, including ShcA (SHC1), ShcC (SHC3), and Fe65 (APBB1), can bind to and interact with the conserved YENPTY motif in the APP-C terminus. Here we have described for the first time the effects of RNA interference (RNAi) silencing of ShcA, ShcC, and Fe65 expression on APP processing and Abeta production. RNAi silencing of ShcC led to reductions in the levels of APP-C-terminal fragments (APP-CTFs) and Abeta in H4 human neuroglioma cells stably overexpressing full-length APP (H4-FL-APP cells) but not in those expressing APP-C99 (H4-APP-C99 cells). RNAi silencing of ShcC also led to reductions in BACE levels in H4-FL-APP cells. In contrast, RNAi silencing of the homologue ShcA had no effect on APP processing or Abeta levels. RNAi silencing of Fe65 increased APP-CTF levels, although also decreasing Abeta levels in H4-FL-APP cells. These findings suggest that pharmacologically blocking interaction of APP with ShcC and Fe65 may provide novel therapeutic strategies against AD.  相似文献   
28.
29.
30.
SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site   总被引:10,自引:0,他引:10  
Kidney development occurs in a stereotypic position along the body axis. It begins when a single ureteric bud emerges from the nephric duct in response to GDNF secreted by the adjacent nephrogenic mesenchyme. Posterior restriction of Gdnf expression is considered critical for correct positioning of ureteric bud development. Here we show that mouse mutants lacking either SLIT2 or its receptor ROBO2, molecules known primarily for their function in axon guidance and cell migration, develop supernumerary ureteric buds that remain inappropriately connected to the nephric duct, and that the SLIT2/ROBO2 signal is transduced in the nephrogenic mesenchyme. Furthermore, we show that Gdnf expression is inappropriately maintained in anterior nephrogenic mesenchyme in these mutants. Thus our data identify an intercellular signaling system that restricts, directly or indirectly, the extent of the Gdnf expression domain, thereby precisely positioning the site of kidney induction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号