首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46篇
  免费   2篇
  48篇
  2021年   2篇
  2016年   1篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1996年   2篇
  1994年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1960年   1篇
  1959年   1篇
  1936年   1篇
排序方式: 共有48条查询结果,搜索用时 9 毫秒
21.
1. Frog skin epithelium has basolateral K+ channels that normally define the basolateral membrane potential between 80 and 100 mV. 2. The membrane mentioned also has almost silent chloride channels and a [Na+, K+, 2Cl-] cotransport, the latter probably maintains the high Cl- in the capital (also called syncytium) cells. 3. If the K+ channels are blocked by Ba2+ (or Li+) it is possible to demonstrate potential gating of the chloride channels of the basolateral membrane. 4. When the normal K+ channels are blocked, a potential-dependent K+ conductance slowly emerges. 5. If Li+ is substituted for outside Na+ the skin shows potential oscillations of about 40 mV at a frequency of about six per hour. 6. The anion channel inhibitor Indacrinone stops these oscillations. 7. The role of Cl- and K+ channels in these oscillations is discussed. 8. The transepithelial inward transport of Li+ requires the presence of Na+ and seems to be due to exchange of cellular Li+ against inside Na+ via the basolateral Na+/H+ exchanger.  相似文献   
22.
Summary The pathway for movement of chloride ions across frog skin is not well understood. Mitochondria-rich (MR) cells have been proposed as the route for chloride across the skin. To test this hypothesis we studied the MR cells of the skin of the frog,Rana pipiens, by quantitative light microscopic determination of cell volume. MR cell volume was influenced by changes in the chloride concentration or osmolality of the outside bathing solution. MR cells shrank about 23% when all chloride was removed from the outside (mucosal) bathing solution. MR cells were also shown to be responsive to changes in the osmolality of either the mucosal or serosal bath. Osmotically-induced swelling caused by dilution of the serosal bath resulted in volume regulatory decrease. These results are consistent with the hypothesis that MR cells constitute the pathway for chloride movement across frog skin.  相似文献   
23.

Background  

As the origin of a life-and-death signal detected from systemic arterial pressure, which sequentially increases (pro-life) and decreases (pro-death) to reflect progressive dysfunction of central cardiovascular regulation during the advancement towards brain stem death in critically ill patients, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate for mechanistic delineation of this fatal phenomenon. The present study assessed the hypothesis that extracellular signal-regulated kinase 1/2 (ERK1/2), a member of the mitogen-activated protein kinases (MAPKs) that is important for cell survival and is activated specifically by MAPK kinase 1/2 (MEK1/2), plays a pro-life role in RVLM during brain stem death. We further delineated the participation of MAPK signal-interacting kinase (MNK), a novel substrate of ERK in this process.  相似文献   
24.
Summary The time dependent (i.e., nonstationary) unidirectional fluxes through a multilayered system consisting of sandwiched layers of arbitrary composition and exhibiting arbitrary potential and resistance profiles have been calculated, assuming that the flux is governed by the Smoluchowski equation (i.e., a flux resulting from a diffusion process superimposed upon a migration and/or a convection process, where part of the latter may arise from an active transport process). It is shown that during the building up of the concentration profile of the isotope inside the system towards the stationary value the ratio between the two oppositely directed, time-dependent unidirectional fluxes is, from the very first appearance of the isotope in the surrounding solutions, equal to the value of the stationary flux ratio. The practical implications of this result are discussed.  相似文献   
25.

Background

Gene expression genetic studies in human tissues and cells identify cis- and trans-acting expression quantitative trait loci (eQTLs). These eQTLs provide insights into regulatory mechanisms underlying disease risk. However, few studies systematically characterized eQTL results across cell and tissues types. We synthesized eQTL results from >50 datasets, including new primary data from human brain, peripheral plaque and kidney samples, in order to discover features of human eQTLs.

Results

We find a substantial number of robust cis-eQTLs and far fewer trans-eQTLs consistent across tissues. Analysis of 45 full human GWAS scans indicates eQTLs are enriched overall, and above nSNPs, among positive statistical signals in genetic mapping studies, and account for a significant fraction of the strongest human trait effects. Expression QTLs are enriched for gene centricity, higher population allele frequencies, in housekeeping genes, and for coincidence with regulatory features, though there is little evidence of 5′ or 3′ positional bias. Several regulatory categories are not enriched including microRNAs and their predicted binding sites and long, intergenic non-coding RNAs. Among the most tissue-ubiquitous cis-eQTLs, there is enrichment for genes involved in xenobiotic metabolism and mitochondrial function, suggesting these eQTLs may have adaptive origins. Several strong eQTLs (CDK5RAP2, NBPFs) coincide with regions of reported human lineage selection. The intersection of new kidney and plaque eQTLs with related GWAS suggest possible gene prioritization. For example, butyrophilins are now linked to arterial pathogenesis via multiple genetic and expression studies. Expression QTL and GWAS results are made available as a community resource through the NHLBI GRASP database [http://apps.nhlbi.nih.gov/grasp/].

Conclusions

Expression QTLs inform the interpretation of human trait variability, and may account for a greater fraction of phenotypic variability than protein-coding variants. The synthesis of available tissue eQTL data highlights many strong cis-eQTLs that may have important biologic roles and could serve as positive controls in future studies. Our results indicate some strong tissue-ubiquitous eQTLs may have adaptive origins in humans. Efforts to expand the genetic, splicing and tissue coverage of known eQTLs will provide further insights into human gene regulation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-532) contains supplementary material, which is available to authorized users.  相似文献   
26.

Background  

The combined use of restriction enzymes with PCR has revolutionized molecular cloning, but is inherently restricted by the content of the manipulated DNA sequences. Uracil-excision based cloning is ligase and sequence independent and allows seamless fusion of multiple DNA sequences in simple one-tube reactions, with higher accuracy than overlapping PCR.  相似文献   
27.

The new species Nonea pisidica (Boraginaceae-Boragineae) is described based on two collections by the authors from the region of Lake Burdur in southwest Anatolia, Turkey. It shows a combination of morphological characteristics concerning habit, flower, and fruit that distinguishes it from N. caspica and N. pallens, the two more similar taxa in Nonea sect. Nonea. Karyological analyses corroborate the separation of the three species, which have different chromosome complements and even base numbers. N. pisidica is characterised by 2n = 30, a complement previously unknown for west Asiatic species of Nonea. The dibasic haploid number x = 15 may have originated through amphidiploid hybridisation between two annual, diploid taxa with x = 7 and x = 8, such as N. lutea and N. caspica. The relationships of the new species were further analysed using trnLUAA sequences of the chloroplast genome, which were obtained for 16 selected species of Nonea. The resulting phylogeny confirms that it is related to N. caspica and N. lutea, but not to N. pallens, in spite of morphological resemblance. Lack of relationship with the south Mediterranean N. vesicaria, the only other species of Nonea known to have 2n = 30, suggests that amphidiploidy may have played an important role in speciation processes through recurrent and polytopical occurrence.  相似文献   
28.

Background

Whereas brain death is a vitally important clinical phenomenon, our contemporary understanding on its underlying cellular mechanisms remains elusive. This study evaluated whether the ubiquitin-proteasome system (UPS) in the rostral ventrolateral medulla (RVLM), a neural substrate that our laboratory identified previously to be intimately related to brain death, is engaged in this fatal process.

Methods

We performed proteomics, Western Blot, real-time PCR, ELISA and pharmacological experiments in conjunction with a clinically relevant experimental endotoxemia model of brain death based on intravenous administration of Escherichia coli lipopolysaccharide in adult male Sprague–Dawley rats.

Results

Proteomics, Western blot and enzyme activity analyses demonstrated that polyubiquitination was preserved and de-ubiquitination by ubiquitin C-terminal hydrolase isozyme-L1 (UCH-L1) was sustained, alongside increased monoubiquitin availability or proteasome activity in RVLM over the course of experimental endotoxemia. However, real-time PCR revealed no significant alteration in proteasome subunit alpha type-1, ubiquitin or UCH-L1 at mRNA level. Functionally, whereas microinjection into the bilateral RVLM of proteasome inhibitors (lactacystin or proteasome inhibitor II) potentiated survival, an inhibitor of ubiquitin-recycling (ubiquitin aldehyde) or an UCH-L1 inhibitor exacerbated mortality.

Conclusions

We proposed previously that the progression towards brain death entails a tug-of-war between pro-death and pro-life programs in RVLM. It is conceivable that ubiquitination or de-ubiquitination in RVLM participate in brain death by regulating the degradation of the proteins involved in those programs.  相似文献   
29.
BACKGROUND: The Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) is a randomized, double-blind, active-controlled trial designed to compare the rate of coronary heart disease events in high-risk hypertensive participants initially randomized to a diuretic (chlorthalidone) versus each of three alternative antihypertensive drugs: alpha-adrenergic blocker (doxazosin), ACE-inhibitor (lisinopril), and calcium-channel blocker (amlodipine). Combined cardiovascular disease risk was significantly increased in the doxazosin arm compared to the chlorthalidone arm (RR 1.25; 95% CI, 1.17-1.33; P <.001), with a doubling of heart failure (fatal, hospitalized, or non-hospitalized but treated) (RR 2.04; 95% CI, 1.79-2.32; P <.001). Questions about heart failure diagnostic criteria led to steps to validate these events further. METHODS AND RESULTS: Baseline characteristics (age, race, sex, blood pressure) did not differ significantly between treatment groups (P <.05) for participants with heart failure events. Post-event pharmacologic management was similar in both groups and generally conformed to accepted heart failure therapy. Central review of a small sample of cases showed high adherence to ALLHAT heart failure criteria. Of 105 participants with quantitative ejection fraction measurements provided, (67% by echocardiogram, 31% by catheterization), 29/46 (63%) from the chlorthalidone group and 41/59 (70%) from the doxazosin group were at or below 40%. Two-year heart failure case-fatalities (22% and 19% in the doxazosin and chlorthalidone groups, respectively) were as expected and did not differ significantly (RR 0.96; 95% CI, 0.67-1.38; P = 0.83). CONCLUSION: Results of the validation process supported findings of increased heart failure in the ALLHAT doxazosin treatment arm compared to the chlorthalidone treatment arm.  相似文献   
30.

Background  

Intoxication from the psychostimulant methamphetamine (METH) because of cardiovascular collapse is a common cause of death within the abuse population. For obvious reasons, the heart has been taken as the primary target for this METH-induced toxicity. The demonstration that failure of brain stem cardiovascular regulation, rather than the heart, holds the key to cardiovascular collapse induced by the pesticide mevinphos implicates another potential underlying mechanism. The present study evaluated the hypothesis that METH effects acute cardiovascular depression by dampening the functional integrity of baroreflex via an action on brain stem nuclei that are associated with this homeostatic mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号