首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   629篇
  免费   24篇
  2022年   3篇
  2021年   8篇
  2020年   6篇
  2019年   4篇
  2018年   16篇
  2017年   11篇
  2016年   13篇
  2015年   15篇
  2014年   20篇
  2013年   41篇
  2012年   51篇
  2011年   48篇
  2010年   28篇
  2009年   25篇
  2008年   39篇
  2007年   53篇
  2006年   20篇
  2005年   26篇
  2004年   27篇
  2003年   30篇
  2002年   34篇
  2001年   8篇
  2000年   4篇
  1999年   8篇
  1998年   12篇
  1997年   8篇
  1996年   5篇
  1995年   6篇
  1994年   3篇
  1993年   3篇
  1992年   7篇
  1991年   7篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   10篇
  1986年   4篇
  1985年   4篇
  1984年   5篇
  1982年   3篇
  1981年   3篇
  1980年   5篇
  1977年   4篇
  1973年   1篇
  1972年   1篇
  1969年   1篇
  1967年   1篇
  1966年   2篇
  1964年   1篇
  1963年   2篇
排序方式: 共有653条查询结果,搜索用时 15 毫秒
81.
Inhibition of synthesis of estradiol 17 by the addition of inhibitors of aromatase, a key enzyme in the biosynthesis of estradiol 17, or addition of tamoxifen - an estrogen receptor antagonist, to human placental minces resulted in an increase in the level of LDL-receptor mRNA. This increase could be blocked by the simultaneous addition of estradiol 17. A concentration dependent effect of estradiol 17 on the level of LDL-receptor mRNA was seen both in first trimester, and term placenta. Addition of human chorionic gonadotropin (hCG) to term placental minces also increased the LDL-receptor mRNA levels. When hCG and cycloheximide were added together, an additive effect was observed. The results obtained in this study suggest that the LDL-receptor mRNA levels in the human placenta are regulated by estradiol 17 and hCG.  相似文献   
82.
Although the function of laminin in the basement membrane is known, the function of soluble “neuronal” laminin is unknown. Since laminin is neuroprotective, we determined whether the soluble laminin-1 induces signaling for neuroprotection via its 67KDa laminin-1 receptor (67LR). Treatment of Neuroscreen-1 (NS-1) cells with laminin-1 or YIGSR peptide, which corresponds to a sequence in laminin-1 β1 chain that binds to 67LR, induced a decrease in the cell-surface expression of 67LR and caused its internalization. Furthermore, intracellular cAMP-elevating agents, dibutyryl-cAMP, forskolin, and rolipram, also induced this internalization. Both soluble laminin-1 and YIGSR induced a sustained elevation of intracellular cAMP under defined conditions, suggesting a causal role of cAMP in the endocytosis of 67LR. This endocytosis was not observed in cells deficient in protein kinase A (PKA) nor in cells treated with either SQ 22536, an inhibitor for adenylyl cyclase, or ESI-09, an inhibitor for the exchange protein directly activated by cAMP (Epac). In addition, when internalization occurred in NS-1 cells, 67LR and adenylyl cyclase were localized in early endosomes. Under conditions in which endocytosis had occurred, both laminin-1 and YIGSR protected NS-1 cells from cell death induced by serum withdrawal. However, under conditions in which endocytosis did not occur, neither laminin-1 nor YIGSR protected these cells. Conceivably, the binding of laminin-1 to 67LR causes initial signaling through PKA and Epac, which causes the internalization of 67LR, along with signaling enzymes, such as adenylyl cyclase, into early endosomes. This causes sustained signaling for protection against cell death induced by serum withdrawal.  相似文献   
83.

Key message

Genome-wide association study (GWAS) on 923 maize lines and validation in bi-parental populations identified significant genomic regions for kernel-Zinc and-Iron in maize.

Abstract

Bio-fortification of maize with elevated Zinc (Zn) and Iron (Fe) holds considerable promise for alleviating under-nutrition among the world’s poor. Bio-fortification through molecular breeding could be an economical strategy for developing nutritious maize, and hence in this study, we adopted GWAS to identify markers associated with high kernel-Zn and Fe in maize and subsequently validated marker-trait associations in independent bi-parental populations. For GWAS, we evaluated a diverse maize association mapping panel of 923 inbred lines across three environments and detected trait associations using high-density Single nucleotide polymorphism (SNPs) obtained through genotyping-by-sequencing. Phenotyping trials of the GWAS panel showed high heritability and moderate correlation between kernel-Zn and Fe concentrations. GWAS revealed a total of 46 SNPs (Zn-20 and Fe-26) significantly associated (P?≤?5.03?×?10?05) with kernel-Zn and Fe concentrations with some of these associated SNPs located within previously reported QTL intervals for these traits. Three double-haploid (DH) populations were developed using lines identified from the panel that were contrasting for these micronutrients. The DH populations were phenotyped at two environments and were used for validating significant SNPs (P?≤?1?×?10?03) based on single marker QTL analysis. Based on this analysis, 11 (Zn) and 11 (Fe) SNPs were found to have significant effect on the trait variance (P?≤?0.01, R2?≥?0.05) in at least one bi-parental population. These findings are being pursued in the kernel-Zn and Fe breeding program, and could hold great value in functional analysis and possible cloning of high-value genes for these traits in maize.
  相似文献   
84.
Prioritization of compounds based on human hepatotoxicity potential is currently a key unmet need in drug discovery, as it can become a major problem for several lead compounds in later stages of the drug discovery pipeline. The authors report the validation and implementation of a high-content multiparametric cytotoxicity assay based on simultaneous measurement of 8 key cell health indicators associated with nuclear morphology, plasma membrane integrity, mitochondrial function, and cell proliferation. Compounds are prioritized by (a) computing an in vitro safety margin using the minimum cytotoxic concentration (IC(20)) across all 8 indicators and cell-based efficacy data and (b) using the minimal cytotoxic concentration alone to take into account concentration of drug in tissues. Feasibility data using selected compounds, including quinolone antibiotics, thiazolidinediones, and statins, suggest the viability of this approach. To increase overall throughput of compound prioritization, the authors have identified the higher throughput, plate reader-based CyQUANT assay that is similar to the high-content screening (HCS) assay in sensitivity of measuring inhibition of cell proliferation. It is expected that the phenotypic output from the multiparametric HCS assay in combination with other highly sensitive approaches, such as microarray-based expression analysis of toxic signatures, will contribute to a better understanding and predictivity of human hepatotoxicity potential.  相似文献   
85.
We tested the hypothesis that dopamine contributes significantly to the hydroxyl radical (OH)-induced striatal neurotoxicity caused by 3-nitropropionic acid (3-NP) in a rat model of Huntington's disease. Dopamine (10–100 μM) or 3-NP (10–1000 μM) individually caused a significant increase in the generation of hydroxyl radical (OH) in the mitochondria, which was synergistically enhanced when the lowest dose of the neurotoxin (10 μM) and dopamine (100 μM) were present together. Similarly, systemic administration of l-DOPA (100–250 mg/kg) and a low dose of 3-NP (10 mg/kg) potentiated OH generation in the striatum, and the rats exhibited significant decrease in stride length, a direct indication of neuropathology. The pathology was also evident in striatal sections subjected to NeuN immunohistochemistry. The significant changes in stride length, the production of striatal OH and neuropathological features due to administration of a toxic dose of 3-NP (20 mg/kg) were significantly attenuated by treating the rats with tyrosine hydroxylase inhibitor α-methyl-p-tyrosine prior to 3-NP administration. These results strongly implicate a major contributory role of striatal dopamine in increased generation of OH, which leads to striatal neurodegeneration and accompanied behavioral changes, in 3-NP model of Huntington's disease.  相似文献   
86.
Sensory adaptation in bacterial chemotaxis is mediated by methylation and demethylation of specific glutamyl residues in the cytoplasmic domain of chemoreceptors. Methylation is catalyzed by methyltransferase CheR. In E. coli and related organisms, methylation sufficiently rapid to be physiologically effective requires a carboxyl terminal pentapeptide sequence on the receptor being modified or, via adaptational assistance, on a neighboring homodimer in a receptor cluster. Pentapeptide‐enhanced methylation is thought to be mediated by a ~30 residue, potentially disordered sequence that serves as a flexible arm connecting the receptor body and pentapeptide‐bound methyltransferase, thus allowing diffusionally restricted enzyme to reach methyl‐accepting sites. However, it was not known how many or which sites on the same or neighboring receptors were accessible to the tethered enzyme. We investigated using molecular modeling and found that, in a hexagonal array of trimers of receptor dimers, CheR tethered to a dimer of chemoreceptor Tar by its native 30‐residue flexible‐arm sequence could reach all methyl‐accepting sites on the dimer to which it was tethered plus 48 methyl‐accepting sites distributed among nine neighboring dimers, equivalent to the total sites carried by six receptors. This modeling‐determined methylation neighborhood of one enzyme‐binding dimer and six neighbors corresponds precisely with the experimentally identified neighborhood of seven. Thus, the experimentally observed adaptational assistance can occur by docking of pentapeptide‐bound, diffusionally restricted enzyme to methyl‐accepting sites on neighboring receptors. Our analysis introduces the notion that physiologically relevant adaptational assistance could occur even if only a subset of sites on a particular receptor are within reach.  相似文献   
87.
Resembling the main function of insect adipokinetic hormones (AKHs), the vertebrate hormone glucagon mobilizes energy reserves and participates in the control of glucose level in the blood. Considering the similarities, the effect of porcine glucagon was evaluated in an insect model species, the firebug Pyrrhocoris apterus. Using the mouse anti-glucagon antibody, presence of immunoreactive material was demonstrated for the first time in the firebug CNS and gut by ELISA. Mammalian (porcine) glucagon injected into the adult bugs showed no effect on hemolymph lipid level or on the level of AKH in CNS and hemolymph, however, it activated an antioxidant response when oxidative stress was elicited by paraquat, a diquaternary derivative of 4, 4′-bipyridyl. Glucagon elicited the antioxidant response by increasing glutathione and decreasing protein carbonyl levels in hemolymph, decreasing both protein carbonyl and protein nitrotyrosine levels in CNS. Additionally, when co-injected with paraquat, glucagon partially eliminated oxidative stress markers elicited by this redox cycling agent and oxidative stressor. This indicates that glucagon might induce an antioxidant defense in insects, as recently described for AKH. Failure of glucagon to alter AKH level in the bug's body indicates employment of an independent pathway without involving the native AKH.  相似文献   
88.
89.

Background

Daily nevirapine (NVP) prophylaxis to HIV-exposed infants significantly reduces breast-milk HIV transmission. We assessed NVP-resistance in Indian infants enrolled in the “six-week extended-dose nevirapine” (SWEN) trial who received single-dose NVP (SD-NVP) or SWEN for prevention of breast-milk HIV transmission but who also acquired subtype C HIV infection during the first year of life.

Methods/Findings

Standard population sequencing and cloning for viral subpopulations present at ≥5% frequency were used to determine HIV genotypes from 94% of the 79 infected Indian infants studied. Timing of infection was defined based on when an infant''s blood sample first tested positive for HIV DNA. SWEN-exposed infants diagnosed with HIV by six weeks of age had a significantly higher prevalence of NVP-resistance than those who received SD-NVP, by both standard population sequencing (92% of 12 vs. 38% of 29; p = 0.002) and low frequency clonal analysis (92% of 12 vs. 59% of 29; p = 0.06). Likelihood of infection with NVP-resistant HIV through breast-milk among infants infected after age six weeks was substantial, but prevalence of NVP-resistance did not differ among SWEN or SD-NVP exposed infants by standard population sequencing (15% of 13 vs. 15% of 20; p = 1.00) and clonal analysis (31% of 13 vs. 40% of 20; p = 0.72). Types of NVP-resistance mutations and patterns of persistence at one year of age were similar between the two groups. NVP-resistance mutations did differ by timing of HIV infection; the Y181C variant was predominant among infants diagnosed in the first six weeks of life, compared to Y188C/H during late breast-milk transmission.

Conclusions/Significance

Use of SWEN to prevent breast-milk HIV transmission carries a high likelihood of resistance if infection occurs in the first six weeks of life. Moreover, there was a continued risk of transmission of NVP-resistant HIV through breastfeeding during the first year of life, but did not differ between SD-NVP and SWEN groups. As with SD-NVP, the value of preventing HIV infection in a large number of infants should be considered alongside the high risk of resistance associated with extended NVP prophylaxis.

Trial Registration

ClinicalTrials.gov NCT00061321  相似文献   
90.
MSCs are promising candidates for stem cell therapy and regenerative medicine. Umbilical cord is the easiest obtainable biological source of MSCs and the Wharton's jelly of the umbilical cord is a rich source of fetus-derived stem cells. However, the use of MSCs for therapeutic application is based on their subsequent large-scale in vitro expansion. A fast and efficient protocol for generation of large quantities of MSCs is required to meet the clinical demand and biomedical research needs. Here we have optimized conditions for scaling up of WJ-MSCs. Low seeding density along with basic fibroblast growth factor (bFGF) supplementation in the growth medium, which is DMEM-KO, resulted in propagation of more than 1 x 10(8) cells within a time period of 15 days from a single umbilical cord. The upscaled WJ-MSCs retained their differentiation potential and immunosuppressive capacity. They expressed the typical hMSC surface antigens and the addition of bFGF in the culture medium did not affect the expression levels of HLA-DR and CD 44. A normal karyotype was confirmed in the large-scale expanded WJ-MSCs. Hence, in this study we attempted rapid clinical-scale expansion of WJ-MSCs which would allow these fetus-derived stem cells to be used for various allogeneic cell-based transplantations and tissue engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号