首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1420篇
  免费   76篇
  2022年   13篇
  2021年   21篇
  2020年   10篇
  2019年   13篇
  2018年   33篇
  2017年   18篇
  2016年   27篇
  2015年   43篇
  2014年   62篇
  2013年   89篇
  2012年   79篇
  2011年   89篇
  2010年   60篇
  2009年   45篇
  2008年   77篇
  2007年   82篇
  2006年   41篇
  2005年   45篇
  2004年   55篇
  2003年   59篇
  2002年   48篇
  2001年   34篇
  2000年   24篇
  1999年   25篇
  1998年   21篇
  1997年   13篇
  1996年   13篇
  1995年   14篇
  1994年   6篇
  1993年   8篇
  1992年   25篇
  1991年   28篇
  1990年   25篇
  1989年   25篇
  1988年   14篇
  1987年   23篇
  1986年   23篇
  1985年   21篇
  1984年   10篇
  1981年   15篇
  1980年   8篇
  1978年   10篇
  1977年   7篇
  1976年   11篇
  1975年   9篇
  1972年   7篇
  1970年   7篇
  1969年   6篇
  1967年   6篇
  1966年   5篇
排序方式: 共有1496条查询结果,搜索用时 15 毫秒
81.
A phospholipid flippase activity from the endoplasmic reticulum (ER) of the model organism Saccharomyces cerevisiae has been characterized and functionally reconstituted into proteoliposomes. Analysis of the transbilayer movement of acyl-7-nitrobenz-2-oxa-1,3-diazol-4-yl (acyl-NBD)-labeled phosphatidylcholine in yeast microsomes using a fluorescence stopped-flow back exchange assay revealed a rapid, ATP-independent flip-flop (half-time, <2 min). Proteoliposomes prepared from a Triton X-100 extract of yeast microsomal membranes were also capable of flipping NBD-labeled phospholipid analogues rapidly in an ATP-independent fashion. Flippase activity was sensitive to the protein modification reagents N-ethylmaleimide and diethylpyrocarbonate. Resolution of the Triton X-100 extract by velocity gradient centrifugation resulted in the identification of a approximately 4S protein fraction enriched in flippase activity as well as of other fractions where flippase activity was depleted or undetectable. We estimate that flippase activity is due to a protein(s) representing approximately 2% (wt/wt) of proteins in the Triton X-100 extract. These results indicate that specific proteins are required to facilitate ATP-independent phospholipid flip-flop in the ER and that their identification is feasible. The architecture of the ER protein translocon suggests that it could account for the flippase activity in the ER. We tested this hypothesis using microsomes prepared from a temperature-sensitive yeast mutant in which the major translocon component, Sec61p, was quantitatively depleted. We found that the protein translocon is not required for transbilayer movement of phospholipids across the ER. Our work defines yeast as a promising model system for future attempts to identify the ER phospholipid flippase and to test and purify candidate flippases.  相似文献   
82.
De novo sphingolipid synthesis is required for the exit of glycosylphosphatidylinositol (GPI)-anchored membrane proteins from the endoplasmic reticulum in yeast. Using a pharmacological approach, we test the generality of this phenomenon by analyzing the transport of GPI-anchored cargo in widely divergent eukaryotic systems represented by African trypanosomes and HeLa cells. Myriocin, which blocks the first step of sphingolipid synthesis (serine + palmitate --> 3-ketodihydrosphingosine), inhibited the growth of cultured bloodstream parasites, and growth was rescued with exogenous 3-ketodihydrosphingosine. Myriocin also blocked metabolic incorporation of [3H]serine into base-resistant sphingolipids. Biochemical analyses indicate that the radiolabeled lipids are not sphingomyelin or inositol phosphorylceramide, suggesting that bloodstream trypanosomes synthesize novel sphingolipids. Inhibition of de novo sphingolipid synthesis with myriocin had no adverse effect on either general secretory trafficking or GPI-dependent trafficking in trypanosomes, and similar results were obtained with HeLa cells. A mild effect on endocytosis was seen for bloodstream trypanosomes after prolonged incubation with myriocin. These results indicate that de novo synthesis of sphingolipids is not a general requirement for secretory trafficking in eukaryotic cells. However, in contrast to the closely related kinetoplastid Leishmania major, de novo sphingolipid synthesis is essential for the viability of bloodstream-stage African trypanosomes.  相似文献   
83.

Background

Age-related macular degeneration (AMD) is the major cause of blindness in the elderly. Those with the neovascular end-stage of disease have irreversible loss of central vision. AMD is a complex disorder in which genetic and environmental factors play a role. Polymorphisms in the complement factor H (CFH) gene, LOC387715, and the HTRA1 promoter are strongly associated with AMD. Smoking also contributes to the etiology. We aimed to provide a model of disease risk based on these factors.

Methods and Findings

We genotyped polymorphisms in CFH and LOC387715/HTRA1 in a case–control study of 401 patients with neovascular AMD and 266 controls without signs of disease, and used the data to produce genetic risk scores for the European-descent population based on haplotypes at these loci and smoking history. CFH and LOC387715/HTRA1 haplotypes and smoking status exerted large effects on AMD susceptibility, enabling risk scores to be generated with appropriate weighting of these three factors. Five common haplotypes of CFH conferred a range of odds ratios (ORs) per copy from 1 to 4.17. Most of the effect of LOC387715/HTRA1 was mediated through one detrimental haplotype (carriage of one copy: OR 2.83; 95% confidence interval [CI] 1.91–4.20), with homozygotes being at particularly high risk (OR 32.83; 95% CI 12.53–86.07). Patients with neovascular macular degeneration had considerably higher scores than those without disease, and risk of blinding AMD rose to 15.5% in the tenth of the population with highest predicted risk.

Conclusions

An individual''s risk of developing AMD in old age can be predicted by combining haplotype data with smoking status. Until there is effective treatment for AMD, encouragement to avoid smoking in those at high genetic risk may be the best option. We estimate that total absence of smoking would have reduced the prevalence of severe AMD by 33%. Unless smoking habits change or preventative treatment becomes available, the prevalence of AMD will rise as a consequence of the increasing longevity of the population.  相似文献   
84.
Disease associated chromosomal rearrangements often have break points located within disease causing genes or in their vicinity. The purpose of this study is to characterize a balanced reciprocal translocation in a girl with intellectual disability and seizures by positional cloning and whole genome sequencing. The translocation was identification by G- banding and confirmed by WCP FISH. Fine mapping using BAC clones and whole genome sequencing using Oxford nanopore long read sequencing technology for a 1.46 X coverage of the genome was done. The positional cloning showed split signals with BAC RP11-943 J20. Long read sequencing analysis of chimeric reads carrying parts of chromosomes X and 20 helped to identify the breakpoints to be in intron 2 of ARHGEF9 gene on Xp11.1 and on 20p13 between RASSF2 and SLC23A2 genes. This is the first report of translocation which successfully delineated to single base resolution using Nanopore sequencing. The genotype-phenotype correlation is discussed.  相似文献   
85.
86.
A Biomimetic Climbing Robot Based on the Gecko   总被引:3,自引:0,他引:3  
1 Introduction The locomotion, sensing, navigation, and adapta- tion capabilities in animals have long inspired humans to emulate them in robots. The purpose of this study was to determine the potential of climbing robots for both ter- restrial and extra-terrestrial explorations. Robots similar to their biological counterparts require extensive sys- tems for power, locomotion, and actuation, with com- putation, sensing, and autonomy. From animal research and current technologies, the possibili…  相似文献   
87.
88.
In November 2021, the COVID-19 pandemic death toll surpassed five million individuals. We applied Mendelian randomization including >3,000 blood proteins as exposures to identify potential biomarkers that may indicate risk for hospitalization or need for respiratory support or death due to COVID-19, respectively. After multiple testing correction, using genetic instruments and under the assumptions of Mendelian Randomization, our results were consistent with higher blood levels of five proteins GCNT4, CD207, RAB14, C1GALT1C1, and ABO being causally associated with an increased risk of hospitalization or respiratory support/death due to COVID-19 (ORs = 1.12–1.35). Higher levels of FAAH2 were solely associated with an increased risk of hospitalization (OR = 1.19). On the contrary, higher levels of SELL, SELE, and PECAM-1 decrease risk of hospitalization or need for respiratory support/death (ORs = 0.80–0.91). Higher levels of LCTL, SFTPD, KEL, and ATP2A3 were solely associated with a decreased risk of hospitalization (ORs = 0.86–0.93), whilst higher levels of ICAM-1 were solely associated with a decreased risk of respiratory support/death of COVID-19 (OR = 0.84). Our findings implicate blood group markers and binding proteins in both hospitalization and need for respiratory support/death. They, additionally, suggest that higher levels of endocannabinoid enzymes may increase the risk of hospitalization. Our research replicates findings of blood markers previously associated with COVID-19 and prioritises additional blood markers for risk prediction of severe forms of COVID-19. Furthermore, we pinpoint druggable targets potentially implicated in disease pathology.  相似文献   
89.
Depletion of CpG dinucleotides in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genomes has been linked to virus evolution, host-switching, virus replication, and innate immune responses. Temporal variations, if any, in the rate of CpG depletion during virus evolution in the host remain poorly understood. Here, we analyzed the CpG content of over 1.4 million full-length SARS-CoV-2 genomes representing over 170 million documented infections during the first 17 months of the pandemic. Our findings suggest that the extent of CpG depletion in SARS-CoV-2 genomes is modest. Interestingly, the rate of CpG depletion is highest during early evolution in humans and it gradually tapers off, almost reaching an equilibrium; this is consistent with adaptations to the human host. Furthermore, within the coding regions, CpG depletion occurs predominantly at codon positions 2-3 and 3-1. Loss of ZAP (Zinc-finger antiviral protein)-binding motifs in SARS-CoV-2 genomes is primarily driven by the loss of the terminal CpG within the motifs. Nonetheless, majority of the CpG depletion in SARS-CoV-2 genomes occurs outside ZAP-binding motifs. SARS-CoV-2 genomes selectively lose CpGs-motifs from a U-rich context; this may help avoid immune recognition by TLR7. SARS-CoV-2 alpha-, beta-, and delta-variants of concern have reduced CpG content compared to sequences from the beginning of the pandemic. In sum, we provide evidence that the rate of CpG depletion in virus genomes is not uniform and it greatly varies over time and during adaptations to the host. This work highlights how temporal variations in selection pressures during virus adaption may impact the rate and the extent of CpG depletion in virus genomes.  相似文献   
90.
Opsins, the protein moieties of animal visual photo-pigments, have emerged as moonlighting proteins with diverse, light-dependent and -independent physiological functions. This raises the need to revise some basic assumptions concerning opsin expression, structure, classification, and evolution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号