首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   2篇
  国内免费   1篇
  82篇
  2022年   1篇
  2021年   8篇
  2020年   3篇
  2019年   3篇
  2018年   9篇
  2017年   1篇
  2016年   4篇
  2015年   8篇
  2014年   3篇
  2013年   4篇
  2012年   4篇
  2011年   9篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   3篇
  2002年   2篇
  1972年   2篇
  1971年   1篇
  1964年   1篇
排序方式: 共有82条查询结果,搜索用时 15 毫秒
21.
A facile and efficient synthesis of novel chromeno[4,3-b]pyrroles has been accomplished by intramolecular 1,3-dipolar cycloaddition which on subsequent Pictet-Spengler cyclisation in presence of p-toluenesulfonic acid yielded indolizino[6,7-b]indoles. The synthesized chromenopyrroles and indolizinoindoles were evaluated for their antimicrobial and antioxidant activities. Compounds 7b, 7e, 7a and 7d exhibited respectively, good antibacterial and antifungal activities against tested pathogens when compared to reference control.  相似文献   
22.
Gene transfer using electroporation is an essential method for the study of developmental biology, especially to understand the internal control of degeneration and apoptosis of the muscle cells that occurs earlier and quicker than the usual degeneration process occurring by aging. Such experimental studies may have a role in developing new strategies for treating patients suffering from inherited primary myopathies such as Duchenne muscular dystrophy (DMD). The present study was designed to evaluate the feasibility of electroporation mediated transfer of reporter genes to the diaphragm in vivo. This is the first report of gene transfer of naked plasmid DNA into the diaphragm muscle in vivo using electroporation. Our results showed that in vivo gene transfer of naked plasmid DNA into the diaphragm muscle using electroporation is feasible.  相似文献   
23.
Journal of Plant Growth Regulation - Owing to water scarcity and environmental hazards of synthetic fertilizers, reducing water and chemical N fertilizers is very urgent for sustainable...  相似文献   
24.
25.
Three series of 2-arylpyridothieno[3,2-d]pyrimidin-4-ones 3a–j, pyridothienotriazolopyrimidines 6–8 and 4-imino-pyridothieno[3,2-d]pyrimidines 9a,b were prepared to improve the pim-1 inhibitory activity of the previously reported 2-arylpyridothieno[3,2-d]pyrimidin-4-ones. All the test compounds showed highly potent pim-1 inhibition with IC50 in the range of 0.06–1.76?µM. No significant difference was detected between the pim-1 inhibitory activity of the 4-pyrimidinone and the 4-imino (=NH) or the cyclised triazolopyrimidine derivatives. The most active compounds were tested for their cytotoxic activity on MCF7 and HCT116 and showed potent activity on both the cell lines.  相似文献   
26.
The production of rifamycins B and SV using glucose as main C-source by Amycolatopsis mediterranei in batch and fed-batch culture was investigated. Fed-batch culture using glucose as mono feeding substrate either in the form of pulse addition, in case of shake flask, or with constant feeding rate, in bioreactor level, proved to be an alternative production system with a significant increase in both volumetric and specific antibiotic production. The maximal concentrations of about 1146 mg/l and 2500 mg/l of rifamycins B and SV, respectively, was obtained in fed-batch culture in bioreactor level under non-oxygen limitation. On the other hand, the rate of rifamycins production was increased from 6.58 to 12.13 mg/l x h for rifamycin B and from 9.47 to 31.83 mg/l x h for rifamycin SV on the bioprocess transfer and improvement from the conventional batch cultivation in shake flask to fed-batch cultivation in stirred tank bioreactor.  相似文献   
27.
28.

Background

Traditional agro-systems in arid areas are a bulwark for preserving soil stability and fertility, in the sight of “reverse desertification”. Nevertheless, the impact of desert farming practices on the diversity and abundance of the plant associated microbiome is poorly characterized, including its functional role in supporting plant development under drought stress.

Methodology/Principal Findings

We assessed the structure of the microbiome associated to the drought-sensitive pepper plant (Capsicum annuum L.) cultivated in a traditional Egyptian farm, focusing on microbe contribution to a crucial ecosystem service, i.e. plant growth under water deficit. The root system was dissected by sampling root/soil with a different degree of association to the plant: the endosphere, the rhizosphere and the root surrounding soil that were compared to the uncultivated soil. Bacterial community structure and diversity, determined by using Denaturing Gradient Gel Electrophoresis, differed according to the microhabitat, indicating a selective pressure determined by the plant activity. Similarly, culturable bacteria genera showed different distribution in the three root system fractions. Bacillus spp. (68% of the isolates) were mainly recovered from the endosphere, while rhizosphere and the root surrounding soil fractions were dominated by Klebsiella spp. (61% and 44% respectively). Most of the isolates (95%) presented in vitro multiple plant growth promoting (PGP) activities and stress resistance capabilities, but their distribution was different among the root system fractions analyzed, with enhanced abilities for Bacillus and the rhizobacteria strains. We show that the C. annuum rhizosphere under desert farming enriched populations of PGP bacteria capable of enhancing plant photosynthetic activity and biomass synthesis (up to 40%) under drought stress.

Conclusions/Significance

Crop cultivation provides critical ecosystem services in arid lands with the plant root system acting as a “resource island” able to attract and select microbial communities endowed with multiple PGP traits that sustain plant development under water limiting conditions.  相似文献   
29.
30.
The loop following helix α2 in glutathione transferase P1-1 has two conserved residues, Cys48 and Tyr50, important for glutathione (GSH) binding and catalytic activity. Chemical modification of Cys48 thwarts the catalytic activity of the enzyme, and mutation of Tyr50 generally decreases the kcat value and the affinity for GSH in a differential manner. Cys48 and Tyr50 were targeted by site-specific mutations and chemical modifications in order to investigate how the α2 loop modulates GSH binding and catalysis. Mutation of Cys48 into Ala increased KMGSH 24-fold and decreased the binding energy of GSH by 1.5 kcal/mol. Furthermore, the protein stability against thermal inactivation and chemical denaturation decreased. The crystal structure of the Cys-free variant was determined, and its similarity to the wild-type structure suggests that the mutation of Cys48 increases the flexibility of the α2 loop rather than dislocating the GSH-interacting residues. On the other hand, replacement of Tyr50 with Cys, producing mutant Y50C, increased the Gibbs free energy of the catalyzed reaction by 4.8 kcal/mol, lowered the affinity for S-hexyl glutathione by 2.2 kcal/mol, and decreased the thermal stability. The targeted alkylation of Cys50 in Y50C increased the affinity for GSH and protein stability. Characterization of the most active alkylated variants, S-n-butyl-, S-n-pentyl-, and S-cyclobutylmethyl-Y50C, indicated that the affinity for GSH is restored by stabilizing the α2 loop through positioning of the key residue into the lock structure of the neighboring subunit. In addition, kcat can be further modulated by varying the structure of the key residue side chain, which impinges on the rate-limiting step of catalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号