首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   10篇
  158篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   12篇
  2014年   9篇
  2013年   14篇
  2012年   13篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   8篇
  2006年   6篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   6篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   4篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1970年   1篇
  1964年   1篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
41.
42.
43.
ICAM-1 is a cell surface glycoprotein originally defined by a monoclonal antibody (MAb) that inhibits phorbol ester-stimulated leukocyte aggregation. Staining of frozen sections and immunofluorescence flow cytometry showed intercellular adhesion molecule-1 (ICAM-1) is expressed on non-hematopoietic cells such as vascular endothelial cells, thymic epithelial cells, certain other epithelial cells, and fibroblasts, and on hematopoietic cells such as tissue macrophages, mitogen-stimulated T lymphocyte blasts, and germinal center dendritic cells in tonsils, lymph nodes, and Peyer's patches. ICAM-1 staining on vascular endothelial cells is most intense in T cell areas in lymph nodes and tonsils showing reactive hyperplasia. ICAM-1 is expressed in low amounts on peripheral blood leukocytes. Phorbol ester-stimulated differentiation of myelomonocytic cell lines greatly increases ICAM-1 expression. ICAM-1 expression on dermal fibroblasts is increased threefold to fivefold by either interleukin 1 (IL 1) or interferon-gamma at 10 U/ml over a period of 4 or 10 hr, respectively. The induction is dependent on protein and mRNA synthesis and is reversible. ICAM-1 displays Mr heterogeneity in different cell types with a Mr of 97,000 on fibroblasts, 114,000 on the myelomonocytic cell line U937, and 90,000 on the B lymphoblastoid cell JY. ICAM-1 biosynthesis involves a Mr approximately 73,000 intracellular precursor. The non-N-glycosylated form resulting from tunicamycin treatment has a Mr of 55,000. ICAM-1 isolated from phorbol myristic acetate (PMA) stimulated U937 and from fibroblasts yields an identical major product of Mr = 60,000 after chemical deglycosylation. ICAM-1 MAb interferes with the adhesion of phytohemagglutinin blasts, and the adhesion of the cell line SKW3 to human dermal fibroblast cell layers. Pretreatment of fibroblasts but not lymphocytes with ICAM-1 MAb, and of lymphocytes but not fibroblasts with lymphocyte function-associated antigen 1 MAb inhibits adhesion. Intercellular adhesion is increased by prior exposure of fibroblasts to IL 1, and correlates with induction of ICAM-1.  相似文献   
44.

Background

Tuberculous meningitis (TBM) is the most common form of neurotuberculosis and the fifth most common form of extrapulmonary TB. Early diagnosis and prompt treatment are the cornerstones of effective disease management. The accurate diagnosis of TBM poses a challenge due to an extensive differential diagnosis, low bacterial load and paucity of cerebrospinal fluid (CSF) especially in children.

Methodology/Principal Findings

We describe the utility of ELISA and qPCR for the detection of Mycobacterium tuberculosis (M. tb) proteins (GlcB, HspX, MPT51, Ag85B and PstS1) and DNA for the rapid diagnosis of TBM. CSF filtrates (n = 532) derived from children were classified as ‘Definite’ TBM (M. tb culture positive, n = 29), ‘Probable and Possible’ TBM (n = 165) and ‘Not-TBM’ including other cases of meningitis or neurological disorders (n = 338). ROC curves were generated from ELISA and qPCR data of ‘Definite’ TBM and Non-Tuberculous infectious meningitis (NTIM) samples and cut-off values were derived to provide ≥95% specificity. devR qPCR, GlcB, HspX and PstS1 ELISAs showed 100% (88;100) sensitivity and 96–97% specificity in ‘Definite’ TBM samples. The application of these cut-offs to ‘Probable and Possible’ TBM groups yielded excellent sensitivity (98%, 94;99) and specificity (98%, 96;99) for qPCR and for GlcB, HspX and MPT51 antigen ELISAs (sensitivity 92–95% and specificity 93–96%). A test combination of qPCR with GlcB and HspX ELISAs accurately detected all TBM samples at a specificity of ∼90%. Logistic regression analysis indicated that these tests significantly added value to the currently used algorithms for TBM diagnosis.

Conclusions

The detection of M. tb GlcB/HspX antigens/devR DNA in CSF is likely to improve the utility of existing algorithms for TBM diagnosis and also hasten the speed of diagnosis.  相似文献   
45.
46.
47.
Age related macular degeneration (AMD) is a progressive, neurodegenerative disorder that leads to the severe loss of central vision in elderlies. The health of retinal pigment epithelial (RPE) cells is critical for the onset of AMD. Chronic oxidative stress along with loss of lysosomal activity is a major cause for RPE cell death during AMD. Hence, development of a molecule for targeted lysosomal delivery of therapeutic protein/drugs in RPE cells is important to prevent RPE cell death during AMD. Using human RPE cell line (ARPE-19 cells) as a study model, we confirmed that hydrogen peroxide (H2O2) induced oxidative stress results in CD44 cell surface receptor overexpression in RPE cells; hence, an important target for specific delivery to RPE cells during oxidative stress. We also demonstrate that the known nucleic acid CD44 aptamer - conjugated with a fluorescent probe (FITC) - is delivered into the lysosomes of CD44 expressing ARPE-19 cells. Hence, as a proof of concept, we demonstrate that CD44 aptamer may be used for lysosomal delivery of cargo to RPE cells under oxidative stress, similar to AMD condition. Since oxidative stress may induce wet and dry AMD, both, along with proliferative vitreoretinopathy, CD44 aptamer may be applicable as a carrier for targeted lysosomal delivery of therapeutic cargoes in ocular diseases showing oxidative stress in RPE cells.  相似文献   
48.
The chemokine receptors CCR2 and CCR5 and their respective ligands regulate leukocyte chemotaxis and activation. To determine the role of these chemokine receptors in the regulation of the intestinal immune response, we induced colitis in CCR2- and CCR5-deficient mice by continuous oral administration of dextran sodium sulfate (DSS). Both CCR2- and CCR5-deficient mice were susceptible to DSS-induced intestinal inflammation. The lack of CCR2 or CCR5 did not reduce the DSS-induced migration of macrophages into the colonic lamina propria. However, both CCR5-deficient mice and, to a lesser degree, CCR2-deficient mice were protected from DSS-induced intestinal adhesions and mucosal ulcerations. CCR5-deficient mice were characterized by a greater relative infiltration of CD4+ and NK1.1+ lymphocyte in the colonic lamina propria when compared to wild-type and CCR2-deficient mice. In CCR5-deficient mice, mucosal mRNA expression of IL-4, IL-5, and IL-10 was increased, whereas that of IFN-gamma was decreased, corresponding to a Th2 pattern of T cell activation. In CCR2-deficient mice, the infiltration of Th2-type T cells in the lamina propria was absent, but increased levels of IL-10 and decreased levels of IFN-gamma may have down regulated mucosal inflammation. Our data indicate that CCR5 may be critical for the promotion of intestinal Th1-type immune responses in mice.  相似文献   
49.
The development of appropriate tools to quantify long‐term carbon (C) budgets following forest transitions, that is, shifts from deforestation to afforestation, and to identify their drivers are key issues for forging sustainable land‐based climate‐change mitigation strategies. Here, we develop a new modeling approach, CRAFT (CaRbon Accumulation in ForesTs) based on widely available input data to study the C dynamics in French forests at the regional scale from 1850 to 2015. The model is composed of two interconnected modules which integrate biomass stocks and flows (Module 1) with litter and soil organic C (Module 2) and build upon previously established coupled climate‐vegetation models. Our model allows to develop a comprehensive understanding of forest C dynamics by systematically depicting the integrated impact of environmental changes and land use. Model outputs were compared to empirical data of C stocks in forest biomass and soils, available for recent decades from inventories, and to a long‐term simulation using a bookkeeping model. The CRAFT model reliably simulates the C dynamics during France's forest transition and reproduces C‐fluxes and stocks reported in the forest and soil inventories, in contrast to a widely used bookkeeping model which strictly only depicts C‐fluxes due to wood extraction. Model results show that like in several other industrialized countries, a sharp increase in forest biomass and SOC stocks resulted from forest area expansion and, especially after 1960, from tree growth resulting in vegetation thickening (on average 7.8 Mt C/year over the whole period). The difference between the bookkeeping model, 0.3 Mt C/year in 1850 and 21 Mt C/year in 2015, can be attributed to environmental and land management changes. The CRAFT model opens new grounds for better quantifying long‐term forest C dynamics and investigating the relative effects of land use, land management, and environmental change.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号