首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   480篇
  免费   12篇
  492篇
  2023年   1篇
  2022年   6篇
  2021年   8篇
  2020年   4篇
  2019年   9篇
  2018年   10篇
  2017年   6篇
  2016年   15篇
  2015年   13篇
  2014年   30篇
  2013年   27篇
  2012年   40篇
  2011年   62篇
  2010年   32篇
  2009年   14篇
  2008年   32篇
  2007年   26篇
  2006年   23篇
  2005年   25篇
  2004年   28篇
  2003年   26篇
  2002年   11篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   3篇
  1987年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   4篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有492条查询结果,搜索用时 15 毫秒
81.
82.
A neutral lipase from the filamentous fungus Rhizopus delemar has been crystallized in both its proenzyme and mature forms. Although the latter crystallizes readily and produces a variety of crystal forms, only one was found to be suitable for X-ray studies. It is monoclinic (C2, a = 92.8 Å, b = 128.9 Å, c = 78.3 Å, β = 135.8) with two molecules in the asymmetric unit related by a noncrystallographic diad. The prolipase crystals are orthorhombic (P212121, with a = 79.8 Å, b = 115.2 Å, c = 73.0 Å) and also contain a pair of molecules in the asymmetric unit. Initial results of molecular replacement calculations using the refined coordinates of the related lipase from Rhizomucor miehei identified the correct orientations and positions of the protein molecules in the unit cells of crystals of both proenzyme and the mature form. © 1994 John Wiley & Sons, Inc.  相似文献   
83.
84.
85.
86.
It is well known that Gαi1(GDP) binds strongly to Gβγ subunits to form the Gαi1(GDP)-Gβγ heterotrimer, and that activation to Gαi1(GTP) results in conformational changes that reduces its affinity for Gβγ subunits. Previous studies of G protein subunit interactions have used stoichiometric amounts of the proteins. Here, we have found that Gαi1(GDP) can bind a second Gβγ subunit with an affinity only 10-fold weaker than the primary site and close to the affinity between activated Gαi1 and Gβγ subunits. Also, we find that phospholipase Cβ2, an effector of Gβγ, does not compete with the second binding site implying that effectors can be bound to the Gαi1(GDP)-(Gβγ)2 complex. Biophysical measurements and molecular docking studies suggest that this second site is distant from the primary one. A synthetic peptide having a sequence identical to the putative second binding site on Gαi1 competes with binding of the second Gβγ subunit. Injection of this peptide into cultured cells expressing eYFP-Gαi1(GDP) and eCFP-Gβγ reduces the overall association of the subunits suggesting this site is operative in cells. We propose that this second binding site serves to promote and stabilize G protein subunit interactions in the presence of competing cellular proteins.The plasma membranes of cells are organized as a series of protein-rich and lipid-rich domains (13). Many of the protein-rich domains, in particular those organized by caveolin proteins, are thought to be complexes of functionally related proteins that transduce extracellular signals (2). There is increasing evidence that heterotrimeric G proteins exist in pre-formed membrane complexes with their receptors and their intracellular effectors (48).The G protein signaling system is initiated when an extracellular agonist binds to its specific G protein-coupled receptor (for review see Refs. 912). The ligand-bound receptor will then catalyze the exchange of GTP for GDP on the Gα subunit in the G protein heterotrimer. In the basal state, Gα(GDP) binds strongly to Gβγ, but in the GTP-bound state this affinity is reduced, allowing Gα(GTP) and Gβγ subunits to individually bind to a host of specific intracellular enzymes and change their catalytic activity.Although the interactions between G protein subunits have been studied extensively in vitro, their behavior in cells may differ. For example, in pure or semi-pure systems, activation of Gα(GDP) sufficiently weakens its affinity for Gβγ resulting in dissociation (13). However, in cells separation of the heterotrimer is observed under some circumstances, but not others (7, 1417). The reason for these differences in behavior is not clear. There are four families of Gα subunits that each contain several members, and, additionally, there are many subtypes of Gβγ subunits (18). It is possible that differences in dissociation behavior reflect differences in affinity between G protein subunit subtypes (19), the presence of various protein partners, and/or differences in post-synthetic modifications of the subunits (20).The mechanism that allows activated G proteins to remain bound is not apparent from the crystal structure (21, 22). If G protein subunits do not dissociate in cells, then their interaction must change in such a manner as to expose the effector interaction site(s). We have found that phospholipase Cβ1 (PLCβ1),4 an important effector of Gαq (23), is bound to Gαq prior to activation and throughout the activation cycle (6) implying that Gαq(GDP) interacts with PLCβ1 in a non-functional manner.We have evidence that signaling complexes are stabilized by a series of secondary interactions. Using purified proteins and model membranes, we have found that membranes of the Gαq-Gβγ/PLCβ1/RGS4 signaling system have secondary, weaker binding sites to members of this signaling system in addition to their high affinity site(s) to their functional partner(s). We speculate that secondary contacts allow for self-scaffolding of signaling proteins. To understand the nature of these secondary contacts, we have studied the ability of the Gαi1(GDP)-Gβγ heterotrimer to remain complexed through the activation cycle (24). Here, we present evidence that Gαi1(GDP) has two distinct Gβγ binding sites that only differ in affinity by an order of magnitude and may allow for continued association between the subunits upon activation. We also find that this site plays an important role in stabilizing G protein associations in cells and provides a mechanism of self-scaffolding.  相似文献   
87.
The Plasmodium falciparum circumsporozoite (CS) protein-based pre-erythrocytic stage vaccine, RTS,S, induces a high level of protection against experimental sporozoite challenge. The immune mechanisms that constitute protection are only partially understood, but are presumed to rely on Abs and T cell responses. In the present study we compared CS protein peptide-recalled IFN-gamma reactivity of pre- and RTS,S-immune lymphocytes from 20 subjects vaccinated with RTS,S. We observed elevated IFN-gamma in subjects protected by RTS,S; moreover, both CD4(+) and CD8(+) T cells produced IFN-gamma in response to CS protein peptides. Significantly, protracted protection, albeit observed only in two of seven subjects, was associated with sustained IFN-gamma response. This is the first study demonstrating correlation in a controlled Plasmodia sporozoite challenge study between protection induced by a recombinant malaria vaccine and Ag-specific T cell responses. Field-based malaria vaccine studies are in progress to validate the establishment of this cellular response as a possible in vitro correlate of protective immunity to exo-erythrocytic stage malaria vaccines.  相似文献   
88.
The aim of this study was to compare the efficiency of DNA extraction from water as well as from blood samples spiked with A. fumigatus spores, using selected commercial kits. Extraction of DNA according to manufacturer's protocols was preceded by blood cells lysis and disruption of fungal cells by enzymatic digestion or bead beating. The efficiency of DNA extraction was measured by PCR using Aspergillus-specific primers and SYBR Green I dye or TaqMan probes targeting 28S rRNA gene. All methods allowed the detection of Aspergillus at the lowest tested density of water suspensions of spores (101 cells/ml). The highest DNA yield was obtained using the ZR Fungal/Bacterial DNA kit, YeastStar Genomic DNA kit, and QIAamp DNA Mini kit with mechanical cell disruption. The ZR Fungal/Bacterial DNA and YeastStar kits showed the highest sensitivity in examination of blood samples spiked with Aspergillus (100 % for the detection of 102 spores and 75 % for 101 spores). Recently, the enzymatic method ceased to be recommended for examination of blood samples for Aspergillus, thus ZR Fungal/Bacterial DNA kit and QIAamp DNA Mini kit with mechanical cell disruption could be used for extraction of Aspergillus DNA from clinical samples.  相似文献   
89.
Bradykinin is a mediator of inflammation, responsible for pain, vasodilation, and capillary permeability. Bradykinin receptor 1 (B(1)R) and bradykinin receptor 2 (B(2)R) are G protein-coupled receptors that mediate kinin effects. The latter is constitutive and rapidly desensitized; the former is induced by inflammatory cytokines and resistant to densensitization. The distribution of bradykinin receptors in human intestinal tissue was studied in patients with inflammatory bowel disease (IBD), namely ulcerative colitis (UC) and Crohn's disease (CD). Both B(2)R and B(1)R proteins are expressed in the epithelial cells of normal and IBD intestines. B(1)R protein is visualized in macrophages at the center of granulomas in CD. B(2)R protein is normally present in the apexes of enterocytes in the basal area and intracellularly in inflammatory tissue. In contrast, B(1)R protein is found in the basal area of enterocytes in normal intestine but in the apical portion of enterocytes in inflamed tissue. B(1)R protein is significantly increased in both active UC and CD intestines compared with controls. In patients with active UC, B(1)R mRNA is significantly higher than B(2)R mRNA. However, in inactive UC patients, the B(1)R and B(2)R mRNA did not differ significantly. Thus bradykinin receptors in IBD may reflect intestinal inflammation. Increased B(1)R gene and protein expression in active IBD provides a structural basis of the important role of bradykinin in chronic inflammation.  相似文献   
90.
The cell surface hydrophobicity is one of the non specific factors of adhesion influencing the ability of microorganisms to colonize nasopharynx. The aim of this paper was to evaluate via salt aggregation test (SAT) the cell surface hydrophobicity of 150 strains of gram-negative rods isolated from the throat or/and nasal specimens of healthy people. It has been found that among the nonfermenting rods hydrophobic strains were predominant. In contrast, the isolates of Enterobacteriaceae family were characterized by the distinctive features of the cell surface within particular genera or even species. The obtained results show that, despite differences in cell surface hydrophobicity, numerous species of gram-negative rods have the ability to colonize the mucous membrane of upper respiratory tract. This suggests that the cell surface hydrophobicity is rather a feature of species or genus, but it is not related to the ecological niche of microorganisms in human body.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号