首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   502篇
  免费   13篇
  515篇
  2023年   1篇
  2022年   6篇
  2021年   9篇
  2020年   4篇
  2019年   9篇
  2018年   10篇
  2017年   6篇
  2016年   19篇
  2015年   14篇
  2014年   31篇
  2013年   28篇
  2012年   42篇
  2011年   60篇
  2010年   32篇
  2009年   14篇
  2008年   36篇
  2007年   28篇
  2006年   24篇
  2005年   25篇
  2004年   28篇
  2003年   27篇
  2002年   13篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   4篇
  1979年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有515条查询结果,搜索用时 21 毫秒
131.
Bradykinin is a mediator of inflammation, responsible for pain, vasodilation, and capillary permeability. Bradykinin receptor 1 (B(1)R) and bradykinin receptor 2 (B(2)R) are G protein-coupled receptors that mediate kinin effects. The latter is constitutive and rapidly desensitized; the former is induced by inflammatory cytokines and resistant to densensitization. The distribution of bradykinin receptors in human intestinal tissue was studied in patients with inflammatory bowel disease (IBD), namely ulcerative colitis (UC) and Crohn's disease (CD). Both B(2)R and B(1)R proteins are expressed in the epithelial cells of normal and IBD intestines. B(1)R protein is visualized in macrophages at the center of granulomas in CD. B(2)R protein is normally present in the apexes of enterocytes in the basal area and intracellularly in inflammatory tissue. In contrast, B(1)R protein is found in the basal area of enterocytes in normal intestine but in the apical portion of enterocytes in inflamed tissue. B(1)R protein is significantly increased in both active UC and CD intestines compared with controls. In patients with active UC, B(1)R mRNA is significantly higher than B(2)R mRNA. However, in inactive UC patients, the B(1)R and B(2)R mRNA did not differ significantly. Thus bradykinin receptors in IBD may reflect intestinal inflammation. Increased B(1)R gene and protein expression in active IBD provides a structural basis of the important role of bradykinin in chronic inflammation.  相似文献   
132.
There are still many controversial observations and opinions on the cellular/subcellular localization and sources of endogenous nitric oxide synthesis in plant cells. NO can be produced in plants by non-enzymatic and enzymatic systems depending on plant species, organ or tissue as well as on physiological state of the plant and changing environmental conditions. The best documented reactions in plant that contribute to NO production are NO production from nitrite as a substrate by cytosolic (cNR) and membrane bound (PM-NR) nitrate reductases (NR), and NO production by several arginine-dependent nitric oxide synthase-like activities (NOS). The latest papers indicate that mitochondria are an important source of arginine- and nitrite-dependent NO production in plants. There are other potential enzymatic sources of NO in plants including xanthine oxidoreductase, peroxidase, cytochrome P450.  相似文献   
133.
The bacterial heat shock protein Hsp33 is a redox-regulated chaperone activated by oxidative stress. In response to oxidation, four cysteines within a Zn2+ binding C-terminal domain form two disulfide bonds with concomitant release of the metal. This leads to the formation of the biologically active Hsp33 dimer. The crystal structure of the N-terminal domain of the E. coli protein has been reported, but neither the structure of the Zn2+ binding motif nor the nature of its regulatory interaction with the rest of the protein are known. Here we report the crystal structure of the full-length B. subtilis Hsp33 in the reduced form. The structure of the N-terminal, dimerization domain is similar to that of the E. coli protein, although there is no domain swapping. The Zn2+ binding domain is clearly resolved showing the details of the tetrahedral coordination of Zn2+ by four thiolates. We propose a structure-based activation pathway for Hsp33.  相似文献   
134.
135.
Bacterial plant pathogens manipulate their hosts by injection of numerous effector proteins into host cells via type III secretion systems. Recognition of these effectors by the host plant leads to the induction of a defense reaction that often culminates in a hypersensitive response manifested as cell death. Genes encoding effector proteins can be exchanged between different strains of bacteria via horizontal transfer, and often individual strains are capable of infecting multiple hosts. Host plant species express diverse repertoires of resistance proteins that mediate direct or indirect recognition of bacterial effectors. As a result, plants and their bacterial pathogens should be considered as two extensive coevolving groups rather than as individual host species coevolving with single pathovars. To dissect the complexity of this coevolution, we cloned 171 effector-encoding genes from several pathovars of Pseudomonas and Ralstonia. We used Agrobacterium tumefaciens-mediated transient assays to test the ability of each effector to induce a necrotic phenotype on 59 plant genotypes belonging to four plant families, including numerous diverse accessions of lettuce (Lactuca sativa) and tomato (Solanum lycopersicum). Known defense-inducing effectors (avirulence factors) and their homologs commonly induced extensive necrosis in many different plant species. Nonhost species reacted to multiple effector proteins from an individual pathovar more frequently and more intensely than host species. Both homologous and sequence-unrelated effectors could elicit necrosis in a similar spectrum of plants, suggesting common effector targets or targeting of the same pathways in the plant cell.  相似文献   
136.
In fungi, transfer of the first mannosyl residue to proteins during their O-glycosylation is catalyzed by protein O-mannosyltransferases. Integration of additional copies of the pmt1 gene into Trichoderma reesei genome unexpectedly resulted in the silencing of pmt1 expression. Strains carrying the additional copies of pmt1 gene exhibited lower total activity of protein O-mannosyltransferases, lower O- and N-glycosylation of secreted proteins and showed defects in their cell wall composition. Moreover, the strains grew slowly on solid medium and were hypersensitive to an antifungal reagent, Calcofluor white. These results indicate that protein O-mannosyltransferases are required for proper cell wall formation, and their decreased activity influences not only O- but also N-glycosylation.  相似文献   
137.
The aim of the study was to assess chosen factors of genetic susceptibility to DMT1: DRB1, DQB1, and TNF-alpha polymorphisms-308 (G/A) in children with DMT1 and their up-to-now healthy siblings. Then we tested whether the association between TNF-alpha genes and DMT1 is independent of HLA. 87 diabetic children, their 78 siblings, and 85 persons from healthy control group were followed up. The highest risk of DMT1 was connected with alleles: DRB1*0401 (OR = 3.39; CI: 1.55-7.41), DRB1*0301 (OR = 2.72; CI: 1.48-5.01), DQB1*0201 (OR = 4.04; CI: 2.17-7.52), DQB1*0302 (OR = 5.08; CI: 2.54-10.14), and TNF-alpha-308 A allele (OR = 2.59; CI: 1.23-5.44). Moreover linkage disequilibrium for TNF-alpha-308 A allele with DRB1*0301 and DQB1*0201 was observed in both diabetic children and their siblings. Diabetic children and their siblings present similar genetic risk factors for DMT1. The association between TNF-alpha-308 A allele and DMT1 is dependent of HLA-DRB1 and DQB1 alleles.  相似文献   
138.
Angiogenesis is a process of new blood vessel formation from pre-existing ones. The most important steps in angiogenesis include detachment, proliferation, migration, homing and differentiation of vascular wall cells, which are mainly endothelial cells and their progenitors. The study focused on the effect of beta-carotene (BC) supplementation (12,000 mg/kg) in the diet on angiogenesis in Balb/c mice. Female Balb/c mice were fed for 5 weeks with two different diets: with BC or without BC supplementation. After 4 weeks of feeding, Balb/c mice were injected subcutaneously with two matrigel plugs with or without basic fibroblast growth factor (bFGF). Six days later, the animals were killed, and the matrigel plugs were used for immunohistochemical staining with CD31 antibody and for gene expression analysis. Microarray and Real-Time PCR data showed down-regulation of genes involved in proliferation and up-regulation of genes encoding inhibitors of apoptosis, proteins regulating cell adhesion, matrix-degrading enzymes and proteins involved in the VEGF pathway. The results of this study demonstrated that BC proangiogenic activity (with or without bFGF) in vivo seemed to be more significantly associated with cells’ protection from apoptosis and their stimulation of chemotaxis/homing than cell proliferation.  相似文献   
139.
A series of enantiomerically enriched 4,5-dihydro-5-[aryl(hydroxy)methyl]-3-methylidenefuran-2(3H)-ones (8) were synthesized by means of asymmetric Sharpless dihydroxylation of the 2-phosphorylated 5-aryl-pent-4-enoic acids 13, followed by Horner-Wadsworth-Emmons reaction of the resulting furanones 15 (Scheme 2). An enantiomeric excess (ee) of 20-95% was achieved for compounds 8, and their absolute configurations were determined by the Mosher ester method. Cytotoxic evaluation against L-1210 and HL-60 leukemia cell lines revealed that the target compounds 8 are active in the micromolar concentration range (Table 2). Thereby, significant differences in activity between the corresponding enantiomers were observed for the HL-60 cell line.  相似文献   
140.
Previous studies have shown that suspension-cultured cells of Solanum genotypes with various polygenic resistances to Phytophthora infestans differed in activities of early oxidative processes in response to culture filtrate (CF) from this pathogen. These studies have now been extended by analysing production of reactive oxygen species (ROS), lipid peroxidation and Lipoxygenase (LOX, E.C.1.13.11.12) activity induced by CF in detached leaves of S. tuberosum cv Bzura and clone H-8105, polygenically resistant and susceptible, respectively, as well as S. nigrum, nonhost, completely resistant. The relative increase in the ROS production was higher in the susceptible clone H-8105 than in both resistant genotypes. Lipid peroxidation increased only in the nonhost S. nigrum. An increase in lipid peroxidation in S. nigrum leaves coincided with enhanced LOX activity. In both S. tuberosum genotypes, significant increases in LOX activity were delayed and unaccompanied by changes in the level of lipid peroxidation. LOX activity attained a higher level in both of the resistant genotypes than in the susceptible one. The present results suggest that the involvement of both ROS production and LOX activity in the defense strategy in Solanum species/P. infestans interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号