首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2670篇
  免费   294篇
  2964篇
  2022年   16篇
  2021年   28篇
  2019年   25篇
  2018年   37篇
  2017年   27篇
  2016年   52篇
  2015年   84篇
  2014年   96篇
  2013年   123篇
  2012年   191篇
  2011年   160篇
  2010年   129篇
  2009年   102篇
  2008年   156篇
  2007年   145篇
  2006年   141篇
  2005年   135篇
  2004年   135篇
  2003年   138篇
  2002年   127篇
  2001年   45篇
  2000年   25篇
  1999年   44篇
  1998年   42篇
  1997年   34篇
  1996年   29篇
  1995年   40篇
  1994年   31篇
  1993年   34篇
  1992年   46篇
  1991年   31篇
  1990年   41篇
  1989年   34篇
  1988年   19篇
  1987年   13篇
  1986年   22篇
  1985年   18篇
  1984年   30篇
  1983年   24篇
  1982年   29篇
  1981年   20篇
  1980年   24篇
  1979年   24篇
  1978年   22篇
  1977年   22篇
  1975年   21篇
  1974年   16篇
  1973年   11篇
  1972年   9篇
  1968年   16篇
排序方式: 共有2964条查询结果,搜索用时 0 毫秒
141.
Total sleep deprivation (TSD) may induce fatigue, neurocognitive slowing and mood changes, which are partly compensated by stress regulating brain systems, resulting in altered dopamine and cortisol levels in order to stay awake if needed. These systems, however, have never been studied in concert. At baseline, after a regular night of sleep, and the next morning after TSD, 12 healthy subjects performed a semantic affective classification functional magnetic resonance imaging (fMRI) task, followed by a [11C]raclopride positron emission tomography (PET) scan. Saliva cortisol levels were acquired at 7 time points during both days. Affective symptoms were measured using Beck Depression Inventory (BDI), Spielberger State Trait Anxiety Index (STAI) and visual analogue scales. After TSD, perceived energy levels, concentration, and speed of thought decreased significantly, whereas mood did not. During fMRI, response speed decreased for neutral words and positive targets, and accuracy decreased trendwise for neutral words and for positive targets with a negative distracter. Following TSD, processing of positive words was associated with increased left dorsolateral prefrontal activation. Processing of emotional words in general was associated with increased insular activity, whereas contrasting positive vs. negative words showed subthreshold increased activation in the (para)hippocampal area. Cortisol secretion was significantly lower after TSD. Decreased voxel-by-voxel [11C]raclopride binding potential (BPND) was observed in left caudate. TSD induces widespread cognitive, neurophysiologic and endocrine changes in healthy adults, characterized by reduced cognitive functioning, despite increased regional brain activity. The blunted HPA-axis response together with altered [11C]raclopride binding in the basal ganglia indicate that sustained wakefulness requires involvement of additional adaptive biological systems.  相似文献   
142.
Organisms use molecular chaperones to combat the unfolding and aggregation of proteins. While protein chaperones have been widely studied, here we demonstrate that DNA and RNA exhibit potent chaperone activity in vitro. Nucleic acids suppress the aggregation of classic chaperone substrates up to 300-fold more effectively than the protein chaperone GroEL. Additionally, RNA cooperates with the DnaK chaperone system to refold purified luciferase. Our findings reveal a possible new role for nucleic acids within the cell: that nucleic acids directly participate in maintaining proteostasis by preventing protein aggregation.  相似文献   
143.
The genetic control of leg development is well characterized in the fly Drosophila melanogaster. These control mechanisms, however, must differ to some degree between different insect species to account for the morphological diversity of thoracic legs in the insects. The legs of the flour beetle Tribolium castaneum differ from the Drosophila legs in their developmental mode as well as in their specific morphology especially at the larval stage. In order to identify genes involved in the morphogenesis of the Tribolium larval legs, we have analyzed EGFP enhancer trap lines of Tribolium. We have identified the zfh2 gene as a novel factor required for normal leg development in Tribolium. RNA interference with zfh2 function leads to two alternative classes of leg phenotype. The loss of a leg segment boundary and the generation of ectopic outgrowths in one class of phenotype suggest a role in leg segmentation and segment growth. The malformation of the pretarsal claw in the second class of phenotype suggests a role in distal development and the morphogenesis of the claw-shaped morphology of the pretarsus. This suggests that zfh2 is involved in the regulation of an unidentified target gene in a concentration-dependent manner. Our results demonstrate that enhancer trap screens in T. castaneum have the potential to identify novel gene functions regulating specific developmental processes.  相似文献   
144.
Transcutaneous stimulation of the human lumbosacral spinal cord is used to evoke spinal reflexes and to neuromodulate altered sensorimotor function following spinal cord injury. Both applications require the reliable stimulation of afferent posterior root fibers. Yet under certain circumstances, efferent anterior root fibers can be co-activated. We hypothesized that body position influences the preferential stimulation of sensory or motor fibers. Stimulus-triggered responses to transcutaneous spinal cord stimulation were recorded using surface-electromyography from quadriceps, hamstrings, tibialis anterior, and triceps surae muscles in 10 individuals with intact nervous systems in the supine, standing and prone positions. Single and paired (30-ms inter-stimulus intervals) biphasic stimulation pulses were applied through surface electrodes placed on the skin between the T11 and T12 inter-spinous processes referenced to electrodes on the abdomen. The paired stimulation was applied to evaluate the origin of the evoked electromyographic response; trans-synaptic responses would be suppressed whereas direct efferent responses would almost retain their amplitude. We found that responses to the second stimulus were decreased to 14%±5% of the amplitude of the response to the initial pulse in the supine position across muscles, to 30%±5% in the standing, and to only 80%±5% in the prone position. Response thresholds were lowest during standing and highest in the prone position and response amplitudes were largest in the supine and smallest in the prone position. The responses obtained in the supine and standing positions likely resulted from selective stimulation of sensory fibers while concomitant motor-fiber stimulation occurred in the prone position. We assume that changes of root-fiber paths within the generated electric field when in the prone position increase the stimulation thresholds of posterior above those of anterior root fibers. Thus, we recommend conducting spinal reflex or neuromodulation studies with subjects lying supine or in an upright position, as in standing or stepping.  相似文献   
145.
We investigated the effects of 3h of anoxia on metabolism of neurons and astrocytes, using a robust cell-based model system that mimics closely the living tissue milieu, i.e., in 3D neural aggregates cultured in bioreactors. Cells were incubated simultaneously with [1-(13)C]glucose and [1,2-(13)C]acetate; and, the gliotoxin fluorocitrate (FC) was used for glial tricarboxylic acid (TCA) cycle inhibition to assess the role of astrocytes for neuronal metabolism after oxygen deprivation. Results show that culture viability was not compromised by exposure to anoxia with and without FC. Interaction between astrocytes and glutamatergic neurons was altered due to anoxia: labeling in glutamine from [1-(13)C]glucose was decreased, whereas that in glutamate from [1,2-(13)C]acetate was increased. In contrast, GABA labeling was not affected by anoxia. It was shown that anoxia did not affect astrocytic capacity to synthesize glutamine in the reoxygenation period. The selective action of FC on astrocytes was confirmed. However, the presence of small amounts of glutamate and GABA labeled from acetate indicated residual activity of the glial TCA cycle. Although major metabolic changes were found due to FC-treatment, the intracellular pool of GABA was kept unchanged. Overall, our data clearly confirm that the glutamate-glutamine cycle depends on astrocytic TCA cycle activity and that mitochondrial impairment of astrocytes will ultimately stop metabolic trafficking between astrocytes and glutamatergic neurons. Additionally, our data suggest a metabolic independence of GABAergic neurons from astrocytes even after situations of complete oxygen depletion.  相似文献   
146.
Zusammenfassung 19 Patienten, die nach einer Nierentransplantation mit Imuran behandelt wurden, wiesen eine erhöhte Anzahl Chromosomenabnormitäten im Vergleich zu 30 gesunden Kontrollpersonen der gleichen Altersklasse auf. Keine signifikant erhöhte Anzahl an Chromosomenabnormitäten fand sich jedoch bei 7 Patienten, die vor und unter der Imuran-behandlung untersucht wurden. Es wird vermutet, daß die Chromosomenabnormitäten bei den 19 mit Imuran behandelten Patienten wahrscheinlich nicht durch Imuran, sondern durch die Urämie entstanden sind.
Summary 19 patients treated with Imuran after a renal transplantation showed a high frequency of chromosome abnormalities, compared with 30 healthy control persons in the same age range. No significantly higher frequency of chromosome abnormalities was, however, found in 7 patients examined before and during treatment with Imuran. It is suggested that the chromosome abnormalities found in the 19 patients treated with Imuran were probably not due to Imuran but to Uremia.
  相似文献   
147.
Rising atmospheric CO2 concentration ([CO2]) and attendant increases in growing season temperature are expected to be the most important global change factors impacting production agriculture. Although maize is the most highly produced crop worldwide, few studies have evaluated the interactive effects of elevated [CO2] and temperature on its photosynthetic physiology, agronomic traits or biomass, and seed yield under open field conditions. This study investigates the effects of rising [CO2] and warmer temperature, independently and in combination, on maize grown in the field throughout a full growing season. Free‐air CO2 enrichment (FACE) technology was used to target atmospheric [CO2] to 200 μmol mol?1 above ambient [CO2] and infrared heaters to target a plant canopy increase of 3.5 °C, with actual season mean heating of ~2.7 °C, mimicking conditions predicted by the second half of this century. Photosynthetic gas‐exchange parameters, leaf nitrogen and carbon content, leaf water potential components, and developmental measurements were collected throughout the season, and biomass and yield were measured at the end of the growing season. As predicted for a C4 plant, elevated [CO2] did not stimulate photosynthesis, biomass, or yield. Canopy warming caused a large shift in aboveground allocation by stimulating season‐long vegetative biomass and decreasing reproductive biomass accumulation at both CO2 concentrations, resulting in decreased harvest index. Warming caused a reduction in photosynthesis due to down‐regulation of photosynthetic biochemical parameters and the decrease in the electron transport rate. The reduction in seed yield with warming was driven by reduced photosynthetic capacity and by a shift in aboveground carbon allocation away from reproduction. This field study portends that future warming will reduce yield in maize, and this will not be mitigated by higher atmospheric [CO2] unless appropriate adaptation traits can be introduced into future cultivars.  相似文献   
148.
Impotent mutant strains of Chlamydomonas reinhardi, mating-type (mt) plus, are described that have normal growth and motility but fail to differentiate into normal gametes. Procedures for their isolation and their genetic analysis are described. Five of the imp strains (imp-2, imp-5, imp-l, imp-7, and imp-8) exhibit no flagellar agglutination when mixed with mt- or mt+ gametes and the mutations are shown to be unlinked to the mt locus (with the possible exception of imp-7). Two of the strains (imp-3 and imp-4) carry leaky mutations that affect cell fusion; neither mutation is found by tetrad analysis to be linked to mt or to the other. Cells of the imp-1 strain agglutinate well with mt- gametes and active agglutination continues for up to 48 hours, but cell fusion occurs only very rarely. Analysis of these rare zygotes indicates that imp-1 is closely linked to the mt+ locus, and fine-structural studies reveal that imp-1 gametes produce a mutant mating structure involved in zygotic cell fusion. The development of sexuality in C. reinhardi therefore appears amenable to genetic dissection.  相似文献   
149.
Zusammenfassung Das Fungicid Captan erwies sich bei 37 Stämmen von Chlorella als ein wirksamer Wachstumshemmstoff. Nur 3 Chlorella-Stämme besitzen eine gewisse Captanresistenz. Das Merkmal Captanresistenz scheint in der Gattung Chlorella nicht artspezifisch verteilt zu sein.Bei Scenedesmus acutus f. alternans Hortob. und Scenedesmus armatus (Chod.) Smith wird Captan noch in einer Dosis von 50 mg/l vertragen, ohne daß Anzeichen einer Hemmwirkung zu erkennen sind.
Differential action of captan on the growth of some strains of Chlorella and Scenedesmus
Summary The fungicide captan was found to inhibit strongly the photoautotrophic growth of 37 Chlorella strains. Only 3 strains are fairly resistant to captan. In the genus Chlorella resistance to captan does not seem to be species specific.Two strains of Scenedesmus (Scenedesmus acutus f. alternans Hortob. and Scenedesmus armatus (Chod.) Smith) tolerate captan up to 50 mg/l without being inhibited at all.
  相似文献   
150.
Growing interest in the sources of origin of blood vessel related diseases has led to an increasing knowledge about the heterogeneity and plasticity of endothelial cells lining arteries and veins. So far, most of these studies were performed on animal models. Here, we hypothesized that the plasticity of human fetal endothelial cells depends on their vascular bed of origin i.e. vein or artery and further that the differences between arterial and venous endothelial cells would extend to phenotype and genotype. We established a method for the isolation of fetal arterial and venous endothelial cells from the human placenta and studied the characteristics of both cell types. Human placental arterial endothelial cells (HPAEC) and human placental venous endothelial cells (HPVEC) express classical endothelial markers and differ in their phenotypic, genotypic, and functional characteristics: HPAEC are polygonal cells with a smooth surface growing in loose arrangements and forming monolayers with classical endothelial cobblestone morphology. They express artery-related genes (hey-2, connexin 40, depp) and more endothelial-associated genes than HPVEC. Functional testing demonstrated that vascular endothelial growth factors (VEGFs) induce a higher proliferative response on HPAEC, whereas placental growth factors (PlGFs) are only effective on HPVEC. HPVEC are spindle-shaped cells with numerous microvilli at their surface. They grow closely apposed to each other, form fibroblastoid swirling patterns at confluence and have shorter generation and population doubling times than HPAEC. HPVEC overexpress development-associated genes (gremlin, mesenchyme homeobox 2, stem cell protein DSC54) and show an enhanced differentiation potential into adipocytes and osteoblasts in contrast to HPAEC. These data provide collective evidence for a juvenile venous and a more mature arterial phenotype of human fetal endothelial cells. The high plasticity of the fetal venous endothelial cells may reflect their role as tissue-resident endothelial progenitors during embryonic development with a possible benefit for regenerative cell therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号