首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2465篇
  免费   216篇
  2022年   16篇
  2021年   26篇
  2020年   9篇
  2019年   23篇
  2018年   35篇
  2017年   29篇
  2016年   46篇
  2015年   76篇
  2014年   79篇
  2013年   114篇
  2012年   180篇
  2011年   150篇
  2010年   119篇
  2009年   85篇
  2008年   150篇
  2007年   135篇
  2006年   130篇
  2005年   128篇
  2004年   130篇
  2003年   127篇
  2002年   110篇
  2001年   43篇
  2000年   17篇
  1999年   37篇
  1998年   40篇
  1997年   30篇
  1996年   31篇
  1995年   45篇
  1994年   28篇
  1993年   30篇
  1992年   40篇
  1991年   26篇
  1990年   31篇
  1989年   23篇
  1988年   14篇
  1986年   17篇
  1985年   13篇
  1984年   22篇
  1983年   20篇
  1982年   22篇
  1981年   17篇
  1980年   19篇
  1979年   17篇
  1978年   19篇
  1977年   22篇
  1975年   17篇
  1974年   15篇
  1973年   11篇
  1972年   9篇
  1968年   13篇
排序方式: 共有2681条查询结果,搜索用时 78 毫秒
171.
Recessive mutations of the Drosophila gene lethal(2)-tumorous imaginal discs (l(2)tid) cause neoplastic growth of the anlagen of the adult organs, the imaginal discs. Here we report that the three proteins encoded by this evolutionarily conserved gene, Tid50, Tid47, and Tid40, identified as members of the DnaJ cochaperone family, are destined for different cellular compartments, build complexes with many proteins in a developmental stage-specific manner, and are likely to be involved in different cellular processes. We show that the cytosolic Tid47 molecule is a novel component of the Hedgehog (Hh)-Patched (Ptc) signaling regulating cell/tissue polarity and spatial patterning during development and is associated with human tumors such as basal cell carcinoma (BCC) and medulloblastoma. We provide functional evidence for its direct in vivo interaction with the Hh-bound Ptc receptor during signal transmission. Because loss of l(2)tid causes neoplastic transformation of Hh-responsive cells, we suggest that Tid47 may at least act as a guardian of the Hh signaling gradient by regulating Ptc homeostasis in the tissue. Finally, we show that the expression of htid-1, the human counterpart of l(2)tid, is altered in human BCCs. We demonstrate that in BCCs loss of htid expression correlates with loss of differentiation capacity of the neoplastic cells similar to that found in the Drosophila tumor model.  相似文献   
172.
The folding and assembly of platelet-derived growth factor (PDGF), a potent mitogen involved in wound-healing processes and member of the cystine knot growth factor family, was studied. The kinetics of the formation of disulfide-bonded dimers were investigated under redox reshuffling conditions starting either from unfolded and reduced PDGF-A- or B-chains or an equimolar mixture of both chains. It is shown that in all cases the formation of disulfide-bonded dimers is a very slow process occurring in the time scale of hours with a first-order rate-determining step. The formation of disulfide-bonded PDGF-AA or PDGF-BB homodimers displayed identical kinetics, indicating that both monomeric forms as well as the dimerized homodimer have similar folding and assembly pathways. In contrast, the formation of the heterodimer occurred three times more rapidly compared with the formation of the homodimers. As both monomeric forms revealed similar renaturation kinetics, it can be concluded that the first-order rate-determining folding step does not occur during monomer folding but must be attributed to conformational rearrangements of the dimerized, not yet disulfide-bonded protein. These structural rearrangements allow a more rapid formation of intermolecular disulfide bonds between the two different monomers of a heterodimer compared with the formation of the disulfide bonds between two identical monomers. The preferential formation of disulfide-bonded heterodimers from an equimolar mixture of unfolded A- and B-chains is thus a kinetically controlled process. Moreover, similar activation enthalpies for the formation of all different isoforms suggest that faster heterodimerization is controlled by entropic factors.  相似文献   
173.
In the current study, we investigated the nature and role of CD44 variant isoforms involved in endothelial cell (EC) injury and tumor cell cytotoxicity mediated by IL-2-activated killer (LAK) cells. Treatment of CD44 wild-type lymphocytes with IL-2 led to increased gene expression of CD44 v6 and v7 variant isoforms and to significant induction of vascular leak syndrome (VLS). CD44v6-v7 knockout (KO) and CD44v7 KO mice showed markedly reduced levels of IL-2-induced VLS. The decreased VLS in CD44v6-v7 KO and CD44v7 KO mice did not result from differential activation and expansion of CD8+ T cells, NK, and NK-T cells or from altered degree of perivascular lymphocytic infiltration in the lungs. LAK cells from CD44v7 KO mice showed a significant decrease in their ability to adhere to and mediate lysis of EC but not lysis of P815 tumor cells in vitro. CD44v7-mediated lysis of EC by LAK cells was dependent on the activity of phosphatidylinositol 3-kinase and tyrosine kinases. Interestingly, IL-2-activated LAK cells expressing CD44hi but not CD44lo were responsible for EC lysis. Furthermore, lysis of EC targets could be blocked by addition of soluble or enzymatic cleavage of CD44v6-v7-binding glycosaminoglycans. Finally, anti-CD44v7 mAbs caused a significant reduction in the adherence to and killing of EC and led to suppression of IL-2-induced VLS. Together, this study suggests that the expression of CD44v7 on LAK cells plays a specific role in EC injury and that it may be possible to reduce EC injury but not tumor cell killing by specifically targeting CD44v7.  相似文献   
174.
Melatonin induces oscillations in the peroxidase-oxidase (PO) reaction catalyzed by horseradish peroxidase. We present here studies of the effect of pH, enzyme concentration, and concentration of melatonin on the oscillation frequency. We also present a mechanistic model to explain the experimentally observed changes in oscillation frequency. Using the data obtained here we are able to predict that oscillations will also occur in the PO reaction catalyzed by myeloperoxidase. Myeloperoxidase is an important protein in activated neutrophils and we provide evidence that the oscillations of NAD(P)H, superoxide and hydrogen peroxide in these cells may involve this enzyme. Thus, our experimental system can be considered a model system for the nonrespiratory oxygen metabolism in activated neutrophils and other similar cells participating in the defence against invading pathogens.  相似文献   
175.
Cold preservation results in cell death via iron-dependent formation of reactive oxygen species, leading to apoptosis during rewarming. We aimed to study cold-induced damage (i.e., injury as a consequence of hypothermia itself and not cold ischemia) in proximal tubular cells (PTC) in various preservation solutions presently applied and to clarify the role of mitochondria in this injury. Primary cultures of rat PTC were incubated at 4 degrees C for 24 h in culture medium, UW, Euro-Collins or HTK solution with and without the iron chelator desferal and rewarmed at 37 degrees C in culture medium. Cell damage, morphology, and apoptosis were studied and mitochondrial membrane potential was assessed by fluorescence microscopy. Cold incubation of PTC in culture medium followed by rewarming caused marked cell damage compared to warm incubation alone (LDH release 39+/-10% vs. 1.6+/-0.3%). Cold-induced damage was aggravated in all preservation solutions (LDH release 85+/-2% for UW; similar in Euro-Collins and HTK). After rewarming, cells showed features suggestive for apoptosis. Desferal prevented cell injury in all solutions (e.g., 8+/-2% for UW). Mitochondrial membrane potential was lost during rewarming and this loss could also be inhibited by desferal. Trifluoperazine, which is known to inhibit mitochondrial permeability transition (MPT), was able to prevent cold-induced injury (LDH 85+/-5% vs. 12+/-2%). We conclude that cold-induced injury occurs in PTC and is aggravated by UW, Euro-Collins, and HTK solution. Iron-dependent MPT is suggested to play a role in this damage. Strategies to prevent cold-induced injury should aim at reducing the availability of "free" iron.  相似文献   
176.
The folding of alpha-helical membrane proteins has previously been described using the two stage model, in which the membrane insertion of independently stable alpha-helices is followed by their mutual interactions within the membrane to give higher order folding and oligomerization. Given recent advances in our understanding of membrane protein structure it has become apparent that in some cases the model may not fully represent the folding process. Here we present a three stage model which gives considerations to ligand binding, folding of extramembranous loops, insertion of peripheral domains and the formation of quaternary structure.  相似文献   
177.
178.
Phosducin-like protein (PhLP) is a member of the phosducin family of G-protein betagamma-regulators and exists in two splice variants. The long isoform PhLP(L) and the short isoform PhLP(S) differ by the presence or absence of an 83-amino acid N terminus. In isolated biochemical assay systems, PhLP(L) is the more potent Gbetagamma-inhibitor, whereas the functional role of PhLP(S) is still unclear. We now report that in intact HEK 293 cells, PhLP(S) inhibited Gbetagamma-induced inositol phosphate generation with approximately 20-fold greater potency than PhLP(L). Radiolabeling of transfected HEK 293 cells with [(32)P] revealed that PhLP(L) is constitutively phosphorylated, whereas PhLP(S) is not. Because PhLP(L) has several consensus sites for the constitutively active kinase casein kinase 2 (CK2) in its N terminus, we tested the phosphorylation of the recombinant proteins by either HEK cell cytosol in the presence or absence of kinase inhibitors or by purified CK2. PhLP(L) was a good CK2 substrate, whereas PhLP(S) and phosducin were not. Progressive truncation and serine/threonine to alanine mutations of the PhLP(L) N terminus identified a serine/threonine cluster (Ser-18/Thr-19/Ser-20) within a small N-terminal region of PhLP(L) (amino acids 5-28) as the site in which PhLP(L) function was modified in HEK 293 cells. In native tissue, PhLP(L) also seems to be regulated by phosphorylation because phosphorylated and non-phosphorylated forms of PhLP(L) were detected in mouse brain and adrenal gland. Moreover, the alternatively spliced isoform PhLP(S) was also found in adrenal tissue. Therefore, the physiological control of G-protein regulation by PhLP seems to involve phosphorylation by CK2 and alternative splicing of the regulator.  相似文献   
179.
Transketolase (TK) catalyzes reactions in the Calvin cycle and the oxidative pentose phosphate pathway (OPPP) and produces erythrose-4-phosphate, which is a precursor for the shikimate pathway leading to phenylpropanoid metabolism. To investigate the consequences of decreased TK expression for primary and secondary metabolism, we transformed tobacco with a construct containing an antisense TK sequence. The results were as follows: (1) a 20 to 40% reduction of TK activity inhibited ribulose-1,5-bisphosphate regeneration and photosynthesis. The inhibition of photosynthesis became greater as irradiance increased across the range experienced in growth conditions (170 to 700 micromol m(-2) sec(-1)). TK almost completely limited the maximum rate of photosynthesis in saturating light and saturating CO(2). (2) Decreased expression of TK led to a preferential decrease of sugars, whereas starch remained high until photosynthesis was strongly inhibited. One of the substrates of TK (fructose-6-phosphate) is the starting point for starch synthesis, and one of the products (erythrose-4-phosphate) inhibits phosphoglucose isomerase, which catalyzes the first reaction leading to starch. (3) A 20 to 50% decrease of TK activity led to decreased levels of aromatic amino acids and decreased levels of the intermediates (caffeic acid and hydroxycinnamic acids) and products (chlorogenic acid, tocopherol, and lignin) of phenylpropanoid metabolism. (4) There was local loss of chlorophyll and carotene on the midrib when TK activity was inhibited by >50%, spreading onto minor veins and lamina in severely affected transformants. (5) OPPP activity was not strongly inhibited by decreased TK activity. These results identify TK activity as an important determinant of photosynthetic and phenylpropanoid metabolism and show that the provision of precursors by primary metabolism colimits flux into the shikimate pathway and phenylpropanoid metabolism.  相似文献   
180.
Chromosomal aberrations were comparatively assessed in nuclei extracted from synovial tissue, primary-culture (P-0) synovial cells, and early-passage synovial fibroblasts (SFB; 98% enrichment; P-1, P-4 [passage 1, passage 4]) from patients with rheumatoid arthritis (RA; n = 21), osteoarthritis (OA; n = 24), and other rheumatic diseases. Peripheral blood lymphocytes (PBL) and skin fibroblasts (FB) (P-1, P-4) from the same patients, as well as SFB from normal joints and patients with joint trauma (JT) (n = 4), were used as controls. Analyses proceeded by standard GTG-banding and interphase centromere fluorescence in situ hybridization. Structural chromosomal aberrations were observed in SFB (P-1 or P-4) from 4 of 21 RA patients (19%), with involvement of chromosome 1 [e.g. del(1)(q12)] in 3 of 4 cases. In 10 of the 21 RA cases (48%), polysomy 7 was observed in P-1 SFB. In addition, aneusomies of chromosomes 4, 6, 8, 9, 12, 18, and Y were present. The percentage of polysomies was increased in P-4. Similar chromosomal aberrations were detected in SFB of OA and spondylarthropathy patients. No aberrations were detected in i) PBL or skin FB from the same patients (except for one OA patient with a karyotype 45,X[10]/46,XX[17] in PBL and variable polysomies in long-term culture skin FB); or ii) synovial tissue and/or P-1 SFB of normal joints or of patients with joint trauma. In conclusion, qualitatively comparable chromosomal aberrations were observed in synovial tissue and early-passage SFB of patients with RA, OA, and other inflammatory joint diseases. Thus, although of possible functional relevance for the pathologic role of SFB in RA, these alterations probably reflect a common response to chronic inflammatory stress in rheumatic diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号