全文获取类型
收费全文 | 146篇 |
免费 | 8篇 |
专业分类
154篇 |
出版年
2019年 | 1篇 |
2018年 | 2篇 |
2017年 | 1篇 |
2016年 | 3篇 |
2015年 | 6篇 |
2014年 | 2篇 |
2013年 | 12篇 |
2012年 | 7篇 |
2011年 | 3篇 |
2010年 | 7篇 |
2009年 | 5篇 |
2008年 | 3篇 |
2007年 | 5篇 |
2006年 | 4篇 |
2005年 | 9篇 |
2004年 | 3篇 |
2003年 | 4篇 |
2002年 | 5篇 |
2001年 | 4篇 |
2000年 | 8篇 |
1999年 | 5篇 |
1998年 | 5篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 4篇 |
1992年 | 8篇 |
1991年 | 5篇 |
1990年 | 4篇 |
1989年 | 7篇 |
1988年 | 1篇 |
1987年 | 4篇 |
1986年 | 1篇 |
1985年 | 2篇 |
1984年 | 3篇 |
1983年 | 1篇 |
1981年 | 2篇 |
1979年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有154条查询结果,搜索用时 15 毫秒
81.
A GFP-MAP4 reporter gene for visualizing cortical microtubule rearrangements in living epidermal cells 总被引:8,自引:7,他引:8 下载免费PDF全文
J Marc CL Granger J Brincat DD Fisher Th Kao AG McCubbin RJ Cyr 《The Plant cell》1998,10(11):1927-1940
Microtubules influence morphogenesis by forming distinct geometrical arrays in the cell cortex, which in turn affect the deposition of cellulose microfibrils. Although many chemical and physical factors affect microtubule orientation, it is unclear how cortical microtubules in elongating cells maintain their ordered transverse arrays and how they reorganize into new geometries. To visualize these reorientations in living cells, we constructed a microtubule reporter gene by fusing the microtubule binding domain of the mammalian microtubule-associated protein 4 (MAP4) gene with the green fluorescent protein (GFP) gene, and transient expression of the recombinant protein in epidermal cells of fava bean was induced. The reporter protein decorates microtubules in vivo and binds to microtubules in vitro. Confocal microscopy and time-course analysis of labeled cortical arrays along the outer epidermal wall revealed the lengthening, shortening, and movement of microtubules; localized microtubule reorientations; and global microtubule reorganizations. The global microtubule orientation in some cells fluctuates about the transverse axis and may be a result of a cyclic self-correcting mechanism to maintain a net transverse orientation during cellular elongation. 相似文献
82.
R. Schuckelt R. Brigelius-Floh M. Maiorino A. Roveri J. Reumkens W. Strabburger F. Ursini B. Wolf L. Floh 《Free radical research》1991,14(5):343-361
The primary structure of phospholipid hydroperoxide glutathione peroxidase (PHGPx) was partially elucidated by sequencing peptides obtained by cyanogen bromide cleavage and tryptic digestion and by isolating and sequencing corresponding cDNA fragments covering about 75% of the total sequence. Based on these data PHGPx can be rated as a selenoprotein homologous, but poorly related to classical glutathione peroxidase (GPx). Peptide loops constituting the active site in GPx are, however, strongly conserved in PHGPx. This suggests that the mechanism of action involving an oxidation/reduction cycle of a selenocysteine residue is essentially identical in PHGPx and GPx. 相似文献
83.
The regulatory role of protons in hyphal tip growth was investigated by using membrane-permeant weak acids to acidify cytoplasm of the oomycete Saprolegnia ferax. Acetic acid decreased cytoplasmic pH from approximately pH 7.2 to 6.8, as shown by SNARF-1 measurements of cytoplasmic pH. Inhibition of growth in a dose-dependent manner by acetic, propionic, and isobutyric acid was accompanied by changes in positioning and morphology of mitochondria and nuclei, condensation of chromatin, disruptions in peripheral actin, and increases in hyphal diameter. These cellular alterations were fully reversible, and during recovery, major cytoplasmic movements and extensive apical vacuolations were observed. The results are consistent with proton regulation of the cytoskeleton, nuclear matrix, and/or chromosomes. However, a macroscopic cytoplasmic gradient of H+ in hyphae was not revealed by SNARF-1, indicating that if such a H+ gradient were required, it must occur at a finer level than we detected. 相似文献
84.
Chuanchuan Li Xia Meng Zhen Zhang Yanyan Wang Xiaomin Song Wenjia Wang Rongguang Zhang Yun Zhao Catherine CL Wong Zhaocai Zhou 《The EMBO journal》2015,34(23):2903-2920
RIG‐I is a well‐studied sensor of viral RNA that plays a key role in innate immunity. p97 regulates a variety of cellular events such as protein quality control, membrane reassembly, DNA repair, and the cell cycle. Here, we report a new role for p97 with Npl4‐Ufd1 as its cofactor in reducing antiviral innate immune responses by facilitating proteasomal degradation of RIG‐I. The p97 complex is able to directly bind both non‐ubiquitinated RIG‐I and the E3 ligase RNF125, promoting K48‐linked ubiquitination of RIG‐I at residue K181. Viral infection significantly strengthens the interaction between RIG‐I and the p97 complex by a conformational change of RIG‐I that exposes the CARDs and through K63‐linked ubiquitination of these CARDs. Disruption of the p97 complex enhances RIG‐I antiviral signaling. Consistently, administration of compounds targeting p97 ATPase activity was shown to inhibit viral replication and protect mice from vesicular stomatitis virus (VSV) infection. Overall, our study uncovered a previously unrecognized role for the p97 complex in protein ubiquitination and revealed the p97 complex as a potential drug target in antiviral therapy. 相似文献
85.
Smeeta Shrestha Yang Sun Thomas Lufkin Petra Kraus Yuzuan Or Yenni A. Garcia Naihsuan Guy Paola Ramos Marc B. Cox Fiona Tay Valerie CL Lin 《International journal of biological sciences》2015,11(4):434-447
Tetratricopeptide repeat domain 9A (TTC9A) is a target gene of estrogen and progesterone. It is over-expressed in breast cancer. However, little is known about the physiological function of TTC9A. The objectives of this study were to establish a Ttc9a knockout mouse model and to study the consequence of Ttc9a gene inactivation. The Ttc9a targeting vector was generated by replacing the Ttc9a exon 1 with a neomycin cassette. The mice homozygous for Ttc9a exon 1 deletion appear to grow normally and are fertile. However, further characterization of the female mice revealed that Ttc9a deficiency is associated with greater body weight, bigger thymus and better mammary development in post-pubertal mice. Furthermore, Ttc9a deficient mammary gland was more responsive to estrogen treatment with greater mammary ductal lengthening, ductal branching and estrogen target gene induction. Since Ttc9a is induced by estrogen in estrogen target tissues, these results suggest that Ttc9a is a negative regulator of estrogen function through a negative feedback mechanism. This is supported by in vitro evidence that TTC9A over-expression attenuated ERα activity in MCF-7 cells. Although TTC9A does not bind to ERα or its chaperone protein Hsp90 directly, TTC9A strongly interacts with FKBP38 and FKBP51, both of which interact with ERα and Hsp90 and modulate ERα activity. It is plausible therefore that TTC9A negatively regulates ERα activity through interacting with co-chaperone proteins such as FKBP38 and FKBP51. 相似文献
86.
Santoro A Lioi MB Monfregola J Salzano S Barbieri R Ursini MV 《Mutation research》2005,587(1-2):16-25
L-carnitine is a small essential molecule indispensable in fatty acid metabolism and required in several biological pathways regulating cellular homeostasis. Despite considerable progress in understanding of L-carnitine biosynthesis and metabolism, very few data are reported concerning the protective role of L-carnitine from oxidative stress-induced DNA damage that is known to be a factor in cell transformation and tumourigenesis. In order to detect the capability of L-carnitine to protect mammalian cells from oxidative stress-induced chromosomal effects, we analysed chromosome aberrations in mitotic CHO cells, which represent an appropriate cytogenetic model to study compounds that enhance cell protection against externally induced DNA damage. We chose H2O2 as an inducer of oxidative stress. Our results demonstrate for the first time a marked and reproducible reduction of H2O2-induced chromosome damage involving an L-carnitine-mediated capacity to buffer intracellular formation of reactive oxygen species (ROS). Furthermore, by studying the mitotic index and cell cycle progression, we also demonstrated that this protective effect is highly specific, since L-carnitine itself was not able to prevent the inhibition of cell growth caused by H2O2. 相似文献
87.
M Maiorino A Roveri C Gregolin F Ursini 《Archives of biochemistry and biophysics》1986,251(2):600-605
The effects of Triton X-100, deoxycholate, and fatty acids were studied on the two steps of the ping-pong reaction catalyzed by Se-dependent glutathione peroxidases. The study was carried out by analyzing the single progression curves where the specific glutathione oxidation was monitored using glutathione reductase and NADPH. While the "classic" glutathione peroxidase was inhibited only by Triton, the newly discovered "phospholipid hydroperoxide glutathione peroxidase" was inhibited by deoxycholate and by unsaturated fatty acids. The kinetic analysis showed that in the case of glutathione peroxidase only the interaction of the lipophilic peroxidic substrate was hampered by Triton, indicating that the enzyme is not active at the interface. Phospholipid hydroperoxide glutathione peroxidase activity measured with linoleic acid hydroperoxide as substrate, on the other hand, was not stimulated by the Triton concentrations which have been shown to stimulate the activity on phospholipid hydroperoxides. Furthermore a slight inhibition was apparent at high Triton concentrations and the effect could be attributed to a surface dilution of the substrate. Deoxycholate and unsaturated fatty acids were not inhibitory on glutathione peroxidase but inhibited both steps of the peroxidic reaction of phospholipid hydroperoxide glutathione peroxidase, in the presence of either amphiphilic or hydrophilic substrates. This inhibition pattern suggests an interaction of anionic detergents with the active site of this enzyme. These results are in agreement with the different roles played by these peroxidases in the control of lipid peroxide concentrations in the cells. While glutathione peroxidase reduces the peroxides in the water phase (mainly hydrogen peroxide), the new peroxidase reduces the amphyphilic peroxides, possibly at the water-lipid interface. 相似文献
88.
Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm 总被引:2,自引:0,他引:2
Rajinder Singh Soon G Tan Jothi M Panandam Rahimah Abdul Rahman Leslie CL Ooi Eng-Ti L Low Mukesh Sharma Johannes Jansen Suan-Choo Cheah 《BMC plant biology》2009,9(1):114-19
Background
Marker Assisted Selection (MAS) is well suited to a perennial crop like oil palm, in which the economic products are not produced until several years after planting. The use of DNA markers for selection in such crops can greatly reduce the number of breeding cycles needed. With the use of DNA markers, informed decisions can be made at the nursery stage, regarding which individuals should be retained as breeding stock, which are satisfactory for agricultural production, and which should be culled. The trait associated with oil quality, measured in terms of its fatty acid composition, is an important agronomic trait that can eventually be tracked using molecular markers. This will speed up the production of new and improved oil palm planting materials. 相似文献89.
Protein binding domains of the rat thyroglobulin promoter 总被引:2,自引:0,他引:2
M V Ursini A Gallo E Olivetta A M Musti 《Biochemical and biophysical research communications》1989,163(1):481-488
90.