首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   969篇
  免费   66篇
  1035篇
  2022年   5篇
  2021年   11篇
  2020年   10篇
  2019年   11篇
  2018年   18篇
  2017年   9篇
  2016年   22篇
  2015年   26篇
  2014年   24篇
  2013年   45篇
  2012年   70篇
  2011年   61篇
  2010年   33篇
  2009年   37篇
  2008年   63篇
  2007年   61篇
  2006年   48篇
  2005年   58篇
  2004年   54篇
  2003年   56篇
  2002年   69篇
  2001年   17篇
  2000年   10篇
  1999年   15篇
  1998年   21篇
  1997年   5篇
  1996年   8篇
  1995年   14篇
  1994年   13篇
  1993年   10篇
  1992年   8篇
  1991年   5篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1984年   7篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1979年   6篇
  1978年   9篇
  1976年   5篇
  1974年   5篇
  1973年   7篇
  1972年   7篇
  1971年   4篇
  1970年   3篇
  1969年   3篇
排序方式: 共有1035条查询结果,搜索用时 15 毫秒
91.
Experimental autoimmune myocarditis (EAM) represents a Th17 T cell-mediated mouse model of postinflammatory heart disease. In BALB/c wild-type mice, EAM is a self-limiting disease, peaking 21 days after alpha-myosin H chain peptide (MyHC-alpha)/CFA immunization and largely resolving thereafter. In IFN-gammaR(-/-) mice, however, EAM is exacerbated and shows a chronic progressive disease course. We found that this progressive disease course paralleled persistently elevated IL-17 release from T cells infiltrating the hearts of IFN-gammaR(-/-) mice 30 days after immunization. In fact, IL-17 promoted the recruitment of CD11b(+) monocytes, the major heart-infiltrating cells in EAM. In turn, CD11b(+) monocytes suppressed MyHC-alpha-specific Th17 T cell responses IFN-gamma-dependently in vitro. In vivo, injection of IFN-gammaR(+/+)CD11b(+), but not IFN-gammaR(-/-)CD11b(+), monocytes, suppressed MyHC-alpha-specific T cells, and abrogated the progressive disease course in IFN-gammaR(-/-) mice. Finally, coinjection of MyHC-alpha-specific, but not OVA-transgenic, IFN-gamma-releasing CD4(+) Th1 T cell lines, together with MyHC-alpha-specific Th17 T cells protected RAG2(-/-) mice from EAM. In conclusion, CD11b(+) monocytes play a dual role in EAM: as a major cellular substrate of IL-17-induced inflammation and as mediators of an IFN-gamma-dependent negative feedback loop confining disease progression.  相似文献   
92.
93.
Recent research on mouse models has taken us closer to deciphering the molecular clock mechanism that defines an individual's 'body time'. How feasible will it be to create a molecular timetable that allows determination of individual body time from tissue harvested at a single time point?  相似文献   
94.
The establishment and maintenance of cell polarity play pivotal roles during plant development. During the past five years, proteins that are required for different aspects of plant cell polarity have been identified. However, the functions of lipids and their interactions with proteins that mediate polarity remained largely unaddressed. Recent genetic studies have discovered cell and tissue polarity mutants that have defects in sterol composition, glycosylphosphatidylinositol-anchored proteins, glycosylphosphatidylinositol biosynthesis and phospholipid signalling. Analyses of the affected gene products have provided a first glance at the roles of lipids in cell polarity signalling, as well as in the trafficking and anchoring of polar proteins.  相似文献   
95.
RationaleAbdominal aortic aneurysm (AAA) is a complex disease that leads to a localized dilation of the infrarenal aorta, the rupture of which is associated with significant morbidity and mortality. Animal models of AAA can be used to study how changes in the microstructural and biomechanical behavior of aortic tissues develop as disease progresses in these animals. We chose here to investigate the effect of angiotensin II (AngII) in C57BL/6 mice as a first step towards understanding how such changes occur in the established ApoE?/? AngII infused mouse model of AAA.ObjectiveThe objective of this study was to utilize a recently developed device in our laboratory to determine how the microstructural and biomechanical properties of AngII-infused C57BL/6 wildtype mouse aorta change following 14 days of AngII infusion.MethodsC57BL/6 wildtype mice were infused with either saline or AngII for 14 day. Aortas were excised and tested using a device capable of simultaneously characterizing the biaxial mechanical response and load-dependent (unfixed, unfrozen) extracellular matrix organization of mouse aorta (using multiphoton microscopy). Peak strains and stiffness values were compared across experimental groups, and both datasets were fit to a Fung-type constitutive model. The mean mode and full width at half maximum (FWHM) of fiber histograms from two photon microscopy were quantified in order to assess the preferred fiber distribution and degree of fiber splay, respectively.ResultsThe axial stiffness of all mouse aorta was found to be an order of magnitude larger than the circumferential stiffness. The aortic diameter was found to be significantly increased for the AngII infused mice as compared to saline infused control (p=0.026). Aneurysm, defined as a percent increase in maximum diameter of 30% (defined with respect to saline control), was found in 3 of the 6 AngII infused mice. These three mice displayed adventitial collagen that lacked characteristic fiber crimp. The biomechanical response in the AngII infused mice showed significantly reduced circumferential compliance. We also noticed that the ability of the adventitial collagen fibers in AngII infused mice to disperse in reaction to circumferential loading was suppressed.ConclusionsCollagen remodeling is present following 14 days of AngII infusion in C57BL/6 mice. Aneurysmal development occurred in 50% of our AngII infused mice, and these dilatations were accompanied with adventitial collagen remodeling and decreased circumferential compliance.  相似文献   
96.
97.
Summary Recombination between dispersed yet related serine tRNA genes of Schizosaccharomyces pombe does occur during mitosis but it is approximately three orders of magnitude less frequent than in meiosis. Two mitotic events have been studied in detail. In the first, a sequence of at least 18 nucleotides has been transferred from the donor sup3 gene on the right arm of chromosome I to the related acceptor gene sup12 on the left arm of the same chromosome, thereby leading to the simultaneous change of 8 bp in the acceptor gene. This event must be explained in terms of recombination rather than mutation. It is assumed that it represents mitotic gene conversion, although it was not possible to demonstrate that the donor gene had emerged unchanged from the event. The second case reflects an interaction between sup9 on chromosome III and sup3 on chromosome I. Genetic and physical analysis allows this event to be described as mitotic gene conversion associated with crossingover. The result of this event is a reciprocal translocation. No further chromosomal aberrations were found among an additional 700 potential intergenic convertants tested. Thus intergenic conversion is much less frequently associated with crossingover than allelic conversion. However, the rare intergenic conversion events associated with crossingover provide a molecular mechanism for chromosomal rearrangements.  相似文献   
98.
99.
100.
Just the beginning: novel functions for angiotensin-converting enzymes   总被引:14,自引:0,他引:14  
Cardiovascular disease is predicted to be the commonest cause of death worldwide by the year 2020. Diabetes, smoking and hypertension are the main risk factors. The renin-angiotensin system plays a key role in regulating blood pressure and fluid and electrolyte homeostasis in mammals. The discovery of specific drugs that block either the key enzyme of the renin-angiotensin system, angiotensin-converting enzyme (ACE), or the receptor for its main effector angiotensin II, was a major step forward in the treatment of hypertension and heart failure. In recent years, however, the renin-angiotensin system has been shown to be a far more complex system than initially thought. It has become clear that additional peptide mediators are involved. Furthermore, a new ACE, angiotensin-converting enzyme 2 (ACE2), has been discovered which appears to negatively regulate the renin-angiotensin system. In the heart, ACE2 deficiency results in severe impairment of cardiac contractility and upregulation of hypoxia-induced genes. We shall discuss the interplay of the various effector peptides generated by angiotensin-converting enzymes ACE and ACE2, highlighting the role of ACE2 as a negative regulator of the renin-angiotensin system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号