首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1012篇
  免费   65篇
  2022年   4篇
  2021年   10篇
  2020年   10篇
  2019年   12篇
  2018年   16篇
  2017年   7篇
  2016年   22篇
  2015年   24篇
  2014年   22篇
  2013年   49篇
  2012年   69篇
  2011年   62篇
  2010年   32篇
  2009年   40篇
  2008年   67篇
  2007年   60篇
  2006年   48篇
  2005年   61篇
  2004年   57篇
  2003年   63篇
  2002年   73篇
  2001年   25篇
  2000年   12篇
  1999年   16篇
  1998年   21篇
  1997年   5篇
  1996年   9篇
  1995年   14篇
  1994年   14篇
  1993年   11篇
  1992年   11篇
  1991年   9篇
  1990年   9篇
  1989年   8篇
  1988年   4篇
  1987年   10篇
  1986年   7篇
  1985年   6篇
  1984年   8篇
  1983年   4篇
  1982年   6篇
  1981年   4篇
  1980年   3篇
  1979年   6篇
  1978年   6篇
  1977年   3篇
  1976年   5篇
  1973年   6篇
  1972年   4篇
  1970年   3篇
排序方式: 共有1077条查询结果,搜索用时 15 毫秒
911.
Active transposable elements (TEs) may result in divergent genomic insertion and abundance patterns among conspecific populations. Upon secondary contact, such divergent genetic backgrounds can theoretically give rise to classical Dobzhansky–Muller incompatibilities (DMI), thus contributing to the evolution of endogenous genetic barriers and eventually causing population divergence. We investigated differential TE abundance among conspecific populations of the nonbiting midge Chironomus riparius and evaluated their potential role in causing endogenous genetic incompatibilities between these populations. We focussed on a Chironomus‐specific TE, the minisatellite‐like Cla‐element, whose activity is associated with speciation in the genus. Using a newly generated and annotated draft genome for a genomic study with five natural C. riparius populations, we found highly population‐specific TE insertion patterns with many private insertions. A significant correlation of the pairwise FST estimated from genomewide single‐nucleotide polymorphisms (SNPs) and the FST estimated from TEs is consistent with drift as the major force driving TE population differentiation. However, the significantly higher Cla‐element FST level due to a high proportion of differentially fixed Cla‐element insertions also indicates selection against segregating (i.e. heterozygous) insertions. With reciprocal crossing experiments and fluorescent in situ hybridization of Cla‐elements to polytene chromosomes, we documented phenotypic effects on female fertility and chromosomal mispairings. We propose that the inferred negative selection on heterozygous Cla‐element insertions may cause endogenous genetic barriers and therefore acts as DMI among C. riparius populations. The intrinsic genomic turnover exerted by TEs may thus have a direct impact on population divergence that is operationally different from drift and local adaptation.  相似文献   
912.
Acute appendicitis is the most common indication for pediatric abdominal emergency surgery. Determination of the severity of appendicitis on clinical grounds is challenging. Complicated appendicitis presenting with perforation, abscess or diffuse peritonitis is not uncommon. The question remains why and when acute appendicitis progresses to perforation. The aim of this study was to assess the impact of water permeability on the severity of appendicitis. We show that AQP1 expression and water permeability in appendicitis correlate with the stage of inflammation and systemic infection parameters, leading eventually to perforation of the appendix. AQP1 is also expressed within the ganglia of the enteric nervous system and ganglia count increases with inflammation. Severity of appendicitis can be correlated with water permeability measured by AQP1 protein expression and increase of ganglia count in a progressive manner. This introduces the question if regulation of water permeability can present novel curative or ameliorating therapeutic options.  相似文献   
913.
Sequence characteristics of functional siRNAs   总被引:5,自引:0,他引:5       下载免费PDF全文
RNA interference in mammalian cells is actively used to conduct genetic screens, to identify and to validate targets, and to elucidate regulators and modifiers of cellular pathways. To ensure the specificity and efficacy of the active 21mer siRNA molecules, it is pertinent to develop a strategy for their rational design. Here we show that most functional siRNAs have characteristic sequence features. We tested 601 siRNAs targeting one exogenous and three endogenous genes. The efficacy of the siRNAs was determined at the protein level. Using a decision tree algorithm in combination with information analysis, our analyses revealed four sets of rules with a mean knockdown efficacy ranging from 60% to 73%. (To distinguish between percentages used to describe the quality of an siRNA and the percentages used to describe parts of data sets we underlined the former throughout this paper.) The best rule comprises an A/U at positions 10 and 19, a G/C at position 1, and more than three A/Us between positions 13 and 19, in the sense strand of the siRNA sequence. Using these rules, there is a 99.9% chance of designing an effective siRNA in a set of three with more than 50% knockdown efficiency in a biological readout.  相似文献   
914.
Previous work has demonstrated that the function of extrahepatic cytochrome P450 CYP1A1 is dependent on the availability of heme. CYP1A1 is involved in the activation of polyaromatic hydrocarbons. In the present study we used a transgenic mouse model with chronic impairment of heme synthesis - female porphobilinogen deaminase-deficient (PBGD-/-) mice - to investigate the effects of limited heme in untreated and beta-naphthoflavone (beta-NF)-treated animals on the function of CYP1A1 in brain. The heme content of PBGD-/- mice was diminished in the liver and brain compared to wild types. In the liver, partial heme deficiency led to less potent induction of CYP1A1 mRNA after beta-NF treatment. In the brain, CYP1A1 protein was detected not only at the endoplasmic reticulum (ER), but also in the cytosol of PBGD-/- mice. Furthermore, 7-deethylation of ethoxyresorufin, an indicator of CYP1A1 metabolic activity, could be restored by heme in cytosol of PBGD-/- mouse brain. Independent of the genotype, we found only one cyp1a1 gene product, indicating that the cytosolic appearance of CYP1A1 most likely did not originate from mutant alleles. We conclude that heme deficiency in the brain leads to incomplete heme saturation of CYP1A1, which causes its improper incorporation into the ER membrane and persistence in the cytosol. It is suggested that diseases caused by relative heme deficiency, such as hepatic porphyrias, may lead to impaired hemoprotein function in brain.  相似文献   
915.
The treatment of Arabidopsis thaliana with methyl jasmonate was used to investigate the reaction of 2467 selected genes of primary and secondary metabolism by macroarray hybridization. Hierarchical cluster analysis allowed distinctions to be made between diurnally and methyl jasmonate regulated genes in a time course from 30 min to 24 h. 97 and 64 genes were identified that were up- or down-regulated more than 2–fold by methyl jasmonate, respectively. These genes belong to 18 functional categories of which sulfur-related genes were by far strongest affected. Gene expression and metabolite patterns of sulfur metabolism were analysed in detail, since numerous defense compounds contain oxidized or reduced sulfur. Genes encoding key reactions of sulfate reduction as well as of cysteine, methionine and glutathione synthesis were rapidly up-regulated, but none of the known sulfur-deficiency induced sulfate transporter genes. In addition, increased expression of genes of sulfur-rich defense proteins and of enzymes involved in glucosinolate metabolism was observed. In contrast, profiling of primary and secondary sulfur metabolites revealed only an increase in the indole glucosinolate glucobrassicin upon methyl jasmonate treatment. The observed rapid mRNA changes were thus regulated by a signal independent of the known sulfur deficiency response. These results document for the first time how comprehensively the regulation of sulfur-related genes and plant defense are connected. This interaction is discussed as a new approach to differentiate between supply- and demand-driven regulation of the sulfate assimilation pathway.  相似文献   
916.
917.
Page V  Feller U 《Annals of botany》2005,96(3):425-434
BACKGROUND AND AIMS: The uptake, translocation and redistribution of the heavy metals zinc, manganese, nickel, cobalt and cadmium are relevant for plant nutrition as well as for the quality of harvested plant products. The long-distance transport of these heavy metals within the root system and the release to the shoot in young wheat (Triticum aestivum 'Arina') plants were investigated. METHODS: After the application of 65Zn, 54Mn, 63Ni, 57Co and 109Cd for 24 h to one seminal root (the other seminal roots being excised) of 54-h-old wheat seedlings, the labelled plants were incubated for several days in hydroponic culture on a medium without radionuclides. KEY RESULTS: The content of 65Zn decreased quickly in the labelled part of the root. After the transfer of 65Zn from the roots to the shoot, a further redistribution in the phloem from older to younger leaves was observed. In contrast to 65Zn, 109Cd was released more slowly from the roots to the leaves and was subsequently redistributed in the phloem to the youngest leaves only at trace levels. The content of 63Ni decreased quickly in the labelled part of the root, moving to the newly formed parts of the root system and also accumulating transiently in the expanding leaves. The 54Mn content decreased quickly in the labelled part of the root and increased simultaneously in leaf 1. A strong retention in the labelled part of the root was observed after supplying 57Co. CONCLUSIONS: The dynamics of redistribution of 65Zn, 54Mn, 63Ni, 57Co and 109Cd differed considerably. The rapid redistribution of 63Ni from older to younger leaves throughout the experiment indicated a high mobility in the phloem, while 54Mn was mobile only in the xylem and 57Co was retained in the labelled root without being loaded into the xylem.  相似文献   
918.
Anaphylatoxin C5a is a potent inflammatory mediator associated with pathogenesis and progression of several inflammation-associated disorders. Small molecule C5a receptor (C5aR) antagonist development is hampered by species-specific receptor biology and the associated inability to use standard rat and mouse in vivo models. Gerbil is one rodent species reportedly responsive to small molecule C5aR antagonists with human C5aR affinity. We report the identification of the gerbil C5aR cDNA using a degenerate primer PCR cloning strategy. The nucleotide sequence revealed an open reading frame encoding a 347-amino acid protein. The cloned receptor (expressed in Sf9 cells) bound recombinant human C5a with nanomolar affinity. Alignment of the gerbil C5aR sequence with those from other species showed that a Trp residue in transmembrane domain V is the only transmembrane domain amino acid unique to small molecule C5aR antagonist-responsive species (i.e. gerbil, human, and non-human primate). Site-directed mutagenesis was used to generate human and mouse C5aRs with a residue exchange of this Trp residue. Mutation of Trp to Leu in human C5aR completely eliminated small molecule antagonist-receptor interaction. In contrast, mutation of Leu to Trp in mouse C5aR enabled small molecule antagonist-receptor interaction. This crucial Trp residue is located deeper within transmembrane domain V than residues reportedly involved in C5a- and cyclic peptide C5a antagonist-receptor interaction, suggesting a novel interaction site(s) for small molecule antagonists. These data provide insight into the basis for small molecule antagonist species selectivity and further define sites critical for C5aR activation and function.  相似文献   
919.
920.
Squalestatin1 (SQ1), a potent inhibitor of squalene synthase produced a dose-dependent induction of cytochromes P450 CYP2H1 and CYP3A37 mRNAs in chicken hepatoma cells. The effect of SQ1 was completely reversed by 25-hydroxycholesterol. Bile acids elicited an induction of CYP3A37 and CYP2H1 mRNA. Bile acids also reduced the phenobarbital induction of CYP2H1 but not of CYP3A37 mRNA. The effects of SQ1 and its reversal by 25-hydroxycholesterol and the effects of bile acids were reproduced in reporter gene assays with a phenobarbital-responsive enhancer unit of CYP2H1. These data suggest that an endogenous molecule related to cholesterol homeostasis regulates induction of drug-inducible CYPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号