首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   688篇
  免费   45篇
  2023年   4篇
  2022年   6篇
  2021年   14篇
  2020年   7篇
  2019年   10篇
  2018年   15篇
  2017年   10篇
  2016年   17篇
  2015年   32篇
  2014年   38篇
  2013年   43篇
  2012年   49篇
  2011年   45篇
  2010年   35篇
  2009年   25篇
  2008年   48篇
  2007年   55篇
  2006年   35篇
  2005年   30篇
  2004年   30篇
  2003年   36篇
  2002年   24篇
  2001年   3篇
  2000年   6篇
  1999年   7篇
  1998年   7篇
  1997年   8篇
  1996年   6篇
  1995年   4篇
  1994年   11篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1982年   4篇
  1981年   5篇
  1979年   5篇
  1978年   5篇
  1977年   1篇
  1976年   4篇
  1974年   2篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有733条查询结果,搜索用时 46 毫秒
41.
The onset of active Na(+) transport and activated Cl(-) conductance (G(Cl)) across the skin epithelium of Pelobates syriacus was investigated during natural ontogenetic development. Structural features, including band three and Peanut lectin bindings were tested in parallel and structure-function relationships were attempted. The 22 specimens studied were divided into two tadpole, three juvenile, and two adult stages, corresponding to the Taylor-Kollros standard table, in accordance with external morphology of their developmental stage. Onset of transepithelial electrical potential and drop in conductance occurred abruptly, coinciding with metamorphosis climax of tadpoles into juveniles at about stage XXI of development. Amiloride-sensitive Na(+) transport occurred a little later at stage XXIII, followed by the appearance of activated Cl(-) conductance, G(Cl). Parallel structural examination showed that skin MR cells occurred upon metamorphosis, as the tadpole integument transformed into the adult epithelium and could be associated with the occurrence of activated G(Cl). It was not related temporally with the appearance of band three protein in MR cells. Our findings support the association of G(Cl) with MR cells, whereas band three may only be a corollary of G(Cl) and not necessarily essential for its manifestation.  相似文献   
42.
Banet G  Pick U  Zamir A 《Planta》2000,210(6):947-955
 Like higher plants, unicellular green algae of the genus Dunaliella respond to light stress by enhanced de-epoxidation of violaxanthin and accumulation of Cbr, a protein homologous to early light-inducible proteins (Elips) in plants. Earlier studies indicated that Cbr was associated with the light-harvesting complex of photosystem II (LHCII) and suggested it acted as a zeaxanthin-binding protein and fulfilled a photo-protective function (Levy et al. 1993, J. Biol. Chem. 268: 20892–20896). To characterize the protein-pigment subcomplexes containing Cbr in greater detail than attained so far, thylakoid membranes from Dunaliella salina grown in high light or normal light were solubilized with dodecyl maltoside and fractionated by isoelectric-focusing. Analysis of the resolved LHCII subcomplexes indicated preferred associations among the four LHCIIb polypeptides and between them and Cbr: subcomplexes including Cbr contained one or two of the more acidic of the four LHCIIb polypeptides as well as large amounts of lutein and zeaxanthin relative to chlorophyll a/b. After sucrose gradient centrifugation, Cbr free of LHCIIb polypeptides was detected together with released pigments; this Cbr possibly originated in subcomplexes dissociated in the course of the analysis. These results agree with the conclusion that Cbr is part of the network of LHCIIb protein-pigment complexes and suggest that the role played by Cbr involves the organization and/or stabilization of assemblies highly enriched in zeaxanthin and lutein. Such assemblies may function to protect PSII from photodamage due to overexcitation. Received: 6 August 1999 / Accepted: 23 November 1999  相似文献   
43.
Novel type antagonists for P2Y(1) adenine nucleotide receptors were synthesized by coupling of adenosine 5'-OH group with oligo-aspartate chain via a carbonyl linker. All these conjugates (AdoOC(O)Asp(n), n = 1-4) inhibited the 2MeSADP-stimulated synthesis of inositol phosphates in 1321N1 human astrocytoma cells stably expressing human P2Y(1) receptors. This inhibitory effect followed the rank order AdoOC(O)Asp(2)> AdoOC(O)Asp(3)> AdoOC(O)Asp(1)> AdoOC(O)Asp(4) with antagonistic constant pA(2) = 5.4 for AdoOC(O)Asp(2). Potency of this non-phosphate inhibitor was comparable with the previously known adenosine 3',5'- and 2', 5'-bisphosphates. Chemical and biological stabilities of these novel adenosine derived antagonists of the nucleotide receptor provide perspectives of their pharmacological implication.  相似文献   
44.
Highly active lipase and protease complexes were prepared by non-covalent modification with stearic acid. The protein content and yield of the modified enzyme complexes depended on the enzymes' source. The increase in the transesterification activity of the modified enzymes was 15 fold for Candida rugosa lipase and porcine pancreatic lipase, with preservation of the enantioselectivity. Pseudomonas sp. lipase which showed no activity in its crude form, exhibited an activity of 38 mol/h·mg protein in the modified form. © Rapid Science Ltd. 1998  相似文献   
45.
Plastid chaperonin 60 (cpn60) is a chloroplast protein, presumed to assist in assembly and folding of plastid proteins. Although molecular chaperones often accumulate significantly in response to stress, this has never been demonstrated for cpn60. In this study, the accumulation of cpn60 in Nicotiana seedlings during their development was followed under different stress conditions. It was found that cpn60 accumulates markedly in developing seedlings in response to tentoxin and several other (but not all) stresses. Cpn60 accumulates only during a narrow period of seedling development. It is proposed that cpn60 accumulation under stress is developmentally regulated.  相似文献   
46.
Heterogeneous cell populations form an interconnected network that determine their collective output. One example of such a heterogeneous immune population is tumor‐infiltrating lymphocytes (TILs), whose output can be measured in terms of its reactivity against tumors. While the degree of reactivity varies considerably between different TILs, ranging from null to a potent response, the underlying network that governs the reactivity is poorly understood. Here, we asked whether one can predict and even control this reactivity. To address this we measured the subpopulation compositions of 91 TILs surgically removed from 27 metastatic melanoma patients. Despite the large number of subpopulations compositions, we were able to computationally extract a simple set of subpopulation‐based rules that accurately predict the degree of reactivity. This raised the conjecture of whether one could control reactivity of TILs by manipulating their subpopulation composition. Remarkably, by rationally enriching and depleting selected subsets of subpopulations, we were able to restore anti‐tumor reactivity to nonreactive TILs. Altogether, this work describes a general framework for predicting and controlling the output of a cell mixture.  相似文献   
47.
The CRISPR (clustered, regularly, interspaced, short, palindromic repeats)–Cas (CRISPR-associated genes) systems of archaea and bacteria provide adaptive immunity against viruses and other selfish elements and are believed to curtail horizontal gene transfer (HGT). Limiting acquisition of new genetic material could be one of the sources of the fitness cost of CRISPR–Cas maintenance and one of the causes of the patchy distribution of CRISPR–Cas among bacteria, and across environments. We sought to test the hypothesis that the activity of CRISPR–Cas in microbes is negatively correlated with the extent of recent HGT. Using three independent measures of HGT, we found no significant dependence between the length of CRISPR arrays, which reflects the activity of the immune system, and the estimated number of recent HGT events. In contrast, we observed a significant negative dependence between the estimated extent of HGT and growth temperature of microbes, which could be explained by the lower genetic diversity in hotter environments. We hypothesize that the relevant events in the evolution of resistance to mobile elements and proclivity for HGT, to which CRISPR–Cas systems seem to substantially contribute, occur on the population scale rather than on the timescale of species evolution.  相似文献   
48.
49.
Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model''s primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level.  相似文献   
50.
G protein-gated K+ channels (GIRK; Kir3), activated by Gβγ subunits derived from Gi/o proteins, regulate heartbeat and neuronal excitability and plasticity. Both neurotransmitter-evoked (Ievoked) and neurotransmitter-independent basal (Ibasal) GIRK activities are physiologically important, but mechanisms of Ibasal and its relation to Ievoked are unclear. We have previously shown for heterologously expressed neuronal GIRK1/2, and now show for native GIRK in hippocampal neurons, that Ibasal and Ievoked are interrelated: the extent of activation by neurotransmitter (activation index, Ra) is inversely related to Ibasal. To unveil the underlying mechanisms, we have developed a quantitative model of GIRK1/2 function. We characterized single-channel and macroscopic GIRK1/2 currents, and surface densities of GIRK1/2 and Gβγ expressed in Xenopus oocytes. Based on experimental results, we constructed a mathematical model of GIRK1/2 activity under steady-state conditions before and after activation by neurotransmitter. Our model accurately recapitulates Ibasal and Ievoked in Xenopus oocytes, HEK293 cells and hippocampal neurons; correctly predicts the dose-dependent activation of GIRK1/2 by coexpressed Gβγ and fully accounts for the inverse Ibasal-Ra correlation. Modeling indicates that, under all conditions and at different channel expression levels, between 3 and 4 Gβγ dimers are available for each GIRK1/2 channel. In contrast, available Gαi/o decreases from ~2 to less than one Gα per channel as GIRK1/2''s density increases. The persistent Gβγ/channel (but not Gα/channel) ratio support a strong association of GIRK1/2 with Gβγ, consistent with recruitment to the cell surface of Gβγ, but not Gα, by GIRK1/2. Our analysis suggests a maximal stoichiometry of 4 Gβγ but only 2 Gαi/o per one GIRK1/2 channel. The unique, unequal association of GIRK1/2 with G protein subunits, and the cooperative nature of GIRK gating by Gβγ, underlie the complex pattern of basal and agonist-evoked activities and allow GIRK1/2 to act as a sensitive bidirectional detector of both Gβγ and Gα.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号