首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   698篇
  免费   58篇
  2023年   4篇
  2022年   5篇
  2021年   13篇
  2020年   5篇
  2019年   9篇
  2018年   13篇
  2017年   10篇
  2016年   14篇
  2015年   29篇
  2014年   35篇
  2013年   39篇
  2012年   48篇
  2011年   45篇
  2010年   34篇
  2009年   25篇
  2008年   45篇
  2007年   54篇
  2006年   38篇
  2005年   32篇
  2004年   29篇
  2003年   35篇
  2002年   28篇
  2000年   6篇
  1999年   9篇
  1998年   8篇
  1997年   8篇
  1996年   8篇
  1995年   4篇
  1994年   11篇
  1993年   7篇
  1992年   6篇
  1991年   6篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1986年   4篇
  1985年   7篇
  1984年   10篇
  1982年   5篇
  1981年   5篇
  1979年   4篇
  1978年   6篇
  1976年   6篇
  1974年   4篇
  1973年   4篇
  1972年   5篇
  1970年   3篇
  1968年   3篇
  1967年   3篇
  1966年   2篇
排序方式: 共有756条查询结果,搜索用时 765 毫秒
131.
Understanding microbial nutritional requirements is a key challenge in microbiology. Here we leverage the recent availability of thousands of automatically generated genome-scale metabolic models to develop a predictor of microbial minimal medium requirements, which we apply to thousands of species to study the relationship between their nutritional requirements and their ecological and genomic traits. We first show that nutritional requirements are more similar among species that co-habit many ecological niches. We then reveal three fundamental characteristics of microbial fastidiousness (i.e., complex and specific nutritional requirements): (1) more fastidious microorganisms tend to be more ecologically limited; (2) fastidiousness is positively associated with smaller genomes and smaller metabolic networks; and (3) more fastidious species grow more slowly and have less ability to cooperate with other species than more metabolically versatile organisms. These associations reflect the adaptation of fastidious microorganisms to unique niches with few cohabitating species. They also explain how non-fastidious species inhabit many ecological niches with high abundance rates. Taken together, these results advance our understanding microbial nutrition on a large scale, by presenting new nutrition-related associations that govern the distribution of microorganisms in nature.  相似文献   
132.
One predicted impact of climate change is a poleward shift in the boundaries of species ranges. Existing methods for identifying such a boundary shift based on changes in the observed pattern of occupancy within a grid of cells are sensitive to changes in the overall rate of sightings and their latitudinal distribution that are unconnected to a boundary shift. A formal test for a boundary shift is described that allows for such changes. The test is applied to detect northward shifts in the northern boundary of the Essex skipper (Thymelicus lineola) butterfly and the European goldfinch (Carduelis carduelis) in Great Britain. A shift is detected in the latter case but not in the former. Results from a simulation study are presented showing that the test performs well.  相似文献   
133.
Disturbance of the beneficial gut microbial community is a potential collateral effect of antibiotics, which have many uses in animal agriculture (disease treatment or prevention and feed efficiency improvement). Understanding antibiotic effects on bacterial communities at different intestinal locations is essential to realize the full benefits and consequences of in-feed antibiotics. In this study, we defined the lumenal and mucosal bacterial communities from the small intestine (ileum) and large intestine (cecum and colon) plus feces, and characterized the effects of in-feed antibiotics (chlortetracycline, sulfamethazine and penicillin (ASP250)) on these communities. 16S rRNA gene sequence and metagenomic analyses of bacterial membership and functions revealed dramatic differences between small and large intestinal locations, including enrichment of Firmicutes and phage-encoding genes in the ileum. The large intestinal microbiota encoded numerous genes to degrade plant cell wall components, and these genes were lacking in the ileum. The mucosa-associated ileal microbiota harbored greater bacterial diversity than the lumen but similar membership to the mucosa of the large intestine, suggesting that most gut microbes can associate with the mucosa and might serve as an inoculum for the lumen. The collateral effects on the microbiota of antibiotic-fed animals caused divergence from that of control animals, with notable changes being increases in Escherichia coli populations in the ileum, Lachnobacterium spp. in all gut locations, and resistance genes to antibiotics not administered. Characterizing the differential metabolic capacities and response to perturbation at distinct intestinal locations will inform strategies to improve gut health and food safety.  相似文献   
134.
Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this, current methods for predicting microbial fitness typically focus on yields [e.g., predictions of biomass yield using GEnome-scale metabolic Models (GEMs)] or notably require many empirical kinetic constants or substrate uptake rates, which render these methods ineffective in cases where fitness derives most directly from growth rate. Here we present a new method for predicting cellular growth rate, termed SUMEX, which does not require any empirical variables apart from a metabolic network (i.e., a GEM) and the growth medium. SUMEX is calculated by maximizing the SUM of molar EXchange fluxes (hence SUMEX) in a genome-scale metabolic model. SUMEX successfully predicts relative microbial growth rates across species, environments, and genetic conditions, outperforming traditional cellular objectives (most notably, the convention assuming biomass maximization). The success of SUMEX suggests that the ability of a cell to catabolize substrates and produce a strong proton gradient enables fast cell growth. Easily applicable heuristics for predicting growth rate, such as what we demonstrate with SUMEX, may contribute to numerous medical and biotechnological goals, ranging from the engineering of faster-growing industrial strains, modeling of mixed ecological communities, and the inhibition of cancer growth.  相似文献   
135.
Covalent modification provides a mechanism for modulating molecular state and regulating physiology. A cycle of competing enzymes that add and remove a single modification can act as a molecular switch between “on” and “off” and has been widely studied as a core motif in systems biology. Here, we exploit the recently developed “linear framework” for time scale separation to determine the general principles of such switches. These methods are not limited to Michaelis-Menten assumptions, and our conclusions hold for enzymes whose mechanisms may be arbitrarily complicated. We show that switching efficiency improves with increasing irreversibility of the enzymes and that the on/off transition occurs when the ratio of enzyme levels reaches a value that depends only on the rate constants. Fluctuations in enzyme levels, which habitually occur due to cellular heterogeneity, can cause flipping back and forth between on and off, leading to incoherent mosaic behavior in tissues, that worsens as switching becomes sharper. This trade-off can be circumvented if enzyme levels are correlated. In particular, if the competing catalytic domains are on the same protein but do not influence each other, the resulting bifunctional enzyme can switch sharply while remaining coherent. In the mammalian liver, the switch between glycolysis and gluconeogenesis is regulated by the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). We suggest that bifunctionality of PFK-2/FBPase-2 complements the metabolic zonation of the liver by ensuring coherent switching in response to insulin and glucagon.  相似文献   
136.
137.
Multiple geological and climatic events have created geographical or ecological barriers associated with speciation events, playing a role in biological diversification in North and Central America. Here, we evaluate the influence of the Neogene and Quaternary geological events, as well as the climatic changes in the diversification of the colubrid snake genus Rhadinaea using molecular dating and ancestral area reconstruction. A multilocus sequence dataset was generated for 37 individuals of Rhadinaea from most of the biogeographical provinces where the genus is distributed, representing 19 of the 21 currently recognized species, and two undescribed species. Our analyses show that the majority of the Rhadinaea species nest in two main clades, herein identified as “Eastern” and “Southern”. These clades probably diverged from each other in the early Miocene, and their divergence was followed by 11 divergences during the middle to late Miocene, three divergences during the Pliocene, and six divergences in the Pleistocene. The ancestral distribution of Rhadinaea was reconstructed across the Sierra Madre del Sur. Our phylogenetic analyses do not support the monophyly of Rhadinaea. The Miocene and Pliocene geomorphology, perhaps in conjunction with climate change, appears to have triggered the diversification of the genus, while the climatic changes during the Miocene probably induced the diversification of Rhadinaea in the Sierra Madre del Sur. Our analysis suggests that the uplifting of the Trans‐Mexican Volcanic Belt and Chiapan–Guatemalan highlands in this same period resulted in northward and southward colonization events. This was followed by more recent, independent colonization events in the Pliocene and Pleistocene involving the Balsas Basin, Chihuahuan Desert, Pacific Coast, Sierra Madre Occidental, Sierra Madre Oriental, Sierra Madre del Sur, Trans‐Mexican Volcanic Belt, and Veracruz provinces, probably driven by the climatic fluctuations of the time.  相似文献   
138.
139.
Studying the brain circuits that control behavior is challenging, since in addition to their structural complexity there are continuous feedback interactions between actions and sensed inputs from the environment. It is therefore important to identify mathematical principles that can be used to develop testable hypotheses. In this study, we use ideas and concepts from systems biology to study the dopamine system, which controls learning, motivation, and movement. Using data from neuronal recordings in behavioral experiments, we developed a mathematical model for dopamine responses and the effect of dopamine on movement. We show that the dopamine system shares core functional analogies with bacterial chemotaxis. Just as chemotaxis robustly climbs chemical attractant gradients, the dopamine circuit performs ‘reward-taxis’ where the attractant is the expected value of reward. The reward-taxis mechanism provides a simple explanation for scale-invariant dopaminergic responses and for matching in free operant settings, and makes testable quantitative predictions. We propose that reward-taxis is a simple and robust navigation strategy that complements other, more goal-directed navigation mechanisms.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号