首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   698篇
  免费   58篇
  2023年   4篇
  2022年   5篇
  2021年   13篇
  2020年   5篇
  2019年   9篇
  2018年   13篇
  2017年   10篇
  2016年   14篇
  2015年   29篇
  2014年   35篇
  2013年   39篇
  2012年   48篇
  2011年   45篇
  2010年   34篇
  2009年   25篇
  2008年   45篇
  2007年   54篇
  2006年   38篇
  2005年   32篇
  2004年   29篇
  2003年   35篇
  2002年   28篇
  2000年   6篇
  1999年   9篇
  1998年   8篇
  1997年   8篇
  1996年   8篇
  1995年   4篇
  1994年   11篇
  1993年   7篇
  1992年   6篇
  1991年   6篇
  1990年   5篇
  1989年   3篇
  1988年   3篇
  1986年   4篇
  1985年   7篇
  1984年   10篇
  1982年   5篇
  1981年   5篇
  1979年   4篇
  1978年   6篇
  1976年   6篇
  1974年   4篇
  1973年   4篇
  1972年   5篇
  1970年   3篇
  1968年   3篇
  1967年   3篇
  1966年   2篇
排序方式: 共有756条查询结果,搜索用时 765 毫秒
121.
One of the striking features of evolution is the appearance of novel structures in organisms. Recently, Kirschner and Gerhart have integrated discoveries in evolution, genetics, and developmental biology to form a theory of facilitated variation (FV). The key observation is that organisms are designed such that random genetic changes are channeled in phenotypic directions that are potentially useful. An open question is how FV spontaneously emerges during evolution. Here, we address this by means of computer simulations of two well-studied model systems, logic circuits and RNA secondary structure. We find that evolution of FV is enhanced in environments that change from time to time in a systematic way: the varying environments are made of the same set of subgoals but in different combinations. We find that organisms that evolve under such varying goals not only remember their history but also generalize to future environments, exhibiting high adaptability to novel goals. Rapid adaptation is seen to goals composed of the same subgoals in novel combinations, and to goals where one of the subgoals was never seen in the history of the organism. The mechanisms for such enhanced generation of novelty (generalization) are analyzed, as is the way that organisms store information in their genomes about their past environments. Elements of facilitated variation theory, such as weak regulatory linkage, modularity, and reduced pleiotropy of mutations, evolve spontaneously under these conditions. Thus, environments that change in a systematic, modular fashion seem to promote facilitated variation and allow evolution to generalize to novel conditions.  相似文献   
122.
123.
The bisubstrate fluorescent probe ARC-583 (Adc-Ahx-(d-Arg)6-d-Lys(5-TAMRA)-NH2) and its application for the characterization of both ATP- and protein/peptide substrate-competitive inhibitors of protein kinases PKA (cyclic AMP-dependent protein kinase) and ROCK (rho kinase) in fluorescence polarization-based assay are described. High affinity of the probe (KD = 0.48 nM toward PKA) enables its application for the characterization of inhibitors with nanomolar and micromolar potency and determination of the active concentration of the kinase in individual experiments as well as in the high-throughput screening format. The probe can be used for the assessment of protein-protein interactions (e.g., between regulatory and catalytic subunits of PKA) and as a cyclic AMP biosensor.  相似文献   
124.
Adaptation of the halotolerant alga Dunaliella salina to iron deprivation involves extensive changes of chloroplast morphology, photosynthetic activities, and induction of a major 45-kDa chloroplast protein termed Tidi. Partial amino acid sequencing of proteolytic peptides suggested that Tidi resembles chlorophyll a/b-binding proteins which compose light-harvesting antenna complexes (LHC) (Varsano, T., Kaftan, D., and Pick, U. (2003) J. Plant Nutr. 26, 2197-2210). Here we show that Tidi shares the highest amino acid sequence similarity with light-harvesting I chlorophyll a/b-binding proteins from higher plants but has an extended proline-rich N-terminal domain. The accumulation of Tidi is reversed by iron supplementation, and its level is inversely correlated with photosystem I (PS-I) reaction center proteins. In native gel electrophoresis, Tidi co-migrates with enlarged PS-I-LHC-I super-complexes. Single particle electron microscopy analysis revealed that PS-I units from iron-deficient cells are larger (31 and 37 nm in diameter) than PS-I units from control cells (22 nm). The 77 K chlorophyll fluorescence emission spectra of isolated complexes suggest that the Tidi-LHC-I antenna are functionally coupled to the reaction centers of PS-I. These findings indicate that Tidi acts as an accessory antenna of PS-I. The enlargement of PS-I antenna in algae and in cyanobacteria under iron deprivation suggests a common limitation that requires rebalancing of the energy distribution between the two photosystems.  相似文献   
125.
Cyclooxygenase (COX) isoforms catalyze the committed step in prostaglandin biosynthesis. The primary structures of COX-1 and COX-2 are very similar except that COX-2 has a 19-amino acid (19-AA) segment of unknown function located just inside its C terminus. Here we provide evidence that the major role of the 19-AA cassette is to mediate entry of COX-2 into the ER-associated degradation system that transports ER proteins to the cytoplasm. COX-1 is constitutively expressed in many cells, whereas COX-2 is usually expressed inducibly and transiently. In murine NIH/3T3 fibroblasts, we find that COX-2 protein is degraded with a half-life (t(1/2)) of about 2 h, whereas COX-1 is reasonably stable (t(1/2) > 12 h); COX-2 degradation is retarded by 26 S proteasome inhibitors. Similarly, COX-1 expressed heterologously in HEK293 cells is quite stable (t(1/2) > 24 h), whereas COX-2 expressed heterologously is degraded with a t(1/2) of approximately 5 h, and its degradation is slowed by proteasome inhibitors. A deletion mutant of COX-2 was prepared lacking 18 residues of the 19-AA cassette. This mutant retains native COX-2 activity but, unlike native COX-2, is stable in HEK293 cells. Conversely, inserting the COX-2 19-AA cassette near the C terminus of COX-1 yields a mutant ins594-612 COX-1 that is unstable (t(1/2) approximately 3 h). Mutation of Asn-594, an N-glycosylation site at the beginning of the 19-AA cassette, stabilizes both COX-2 and ins594-612 COX-1; nonetheless, COX mutants that are glycosylated at Asn-594 but lack the remainder of the 19-amino acid cassette (i.e. del597-612 COX-2 and ins594-596 COX-1) are stable. Thus, although glycosylation of Asn-594 is necessary for COX-2 degradation, at least part of the remainder of the 19-AA insert is also required. Finally, kifunensine, a mannosidase inhibitor that can block entry of ER proteins into the ER-associated degradation system, retards COX-2 degradation.  相似文献   
126.
Each of our eyes normally sees a slightly different image of the world around us. The brain can combine these two images into a single coherent representation. However, when the eyes are presented with images that are sufficiently different from each other, an interesting thing happens: Rather than fusing the two images into a combined conscious percept, what transpires is a pattern of perceptual alternations where one image dominates awareness while the other is suppressed; dominance alternates between the two images, typically every few seconds. This perceptual phenomenon is known as binocular rivalry. Binocular rivalry is considered useful for studying perceptual selection and awareness in both human and animal models, because unchanging visual input to each eye leads to alternations in visual awareness and perception. To create a binocular rivalry stimulus, all that is necessary is to present each eye with a different image at the same perceived location. There are several ways of doing this, but newcomers to the field are often unsure which method would best suit their specific needs. The purpose of this article is to describe a number of inexpensive and straightforward ways to create and use binocular rivalry. We detail methods that do not require expensive specialized equipment and describe each method''s advantages and disadvantages. The methods described include the use of red-blue goggles, mirror stereoscopes and prism goggles.  相似文献   
127.
Tomosyn is a 130-kDa cytosolic R-SNARE protein that associates with Q-SNAREs and reduces exocytotic activity. Two paralogous genes, tomosyn-1 and -2, occur in mammals and produce seven different isoforms via alternative splicing. Here, we map the structural differences between the yeast homologue of m-tomosyn-1, Sro7, and tomosyn genes/isoforms to identify domains critical to the regulation of exocytotic activity to tomosyn that are outside the soluble N-ethylmaleimide-sensitive attachment receptor motif. Homology modeling of m-tomosyn-1 based on the known structure of yeast Sro7 revealed a highly conserved functional conformation but with tomosyn containing three additional loop domains that emanate from a β-propeller core. Notably, deletion of loops 1 and 3 eliminates tomosyn inhibitory activity on secretion without altering its soluble N-ethylmaleimide-sensitive attachment receptor pairing with syntaxin1A. By comparison, deletion of loop 2, which contains the hypervariable splice region, did not reduce the ability of tomosyn to inhibit regulated secretion. However, exon variation within the hypervariable splice region resulted in significant differences in protein accumulation of tomosyn-2 isoforms. Functional analysis of s-tomosyn-1, m-tomosyn-1, m-tomosyn-2, and xb-tomosyn-2 demonstrated that they exert similar inhibitory effects on elevated K(+)-induced secretion in PC12 cells, although m-tomosyn-2 was novel in strongly augmenting basal secretion. Finally, we report that m-tomosyn-1 is a target substrate for SUMO 2/3 conjugation and that mutation of this small ubiquitin-related modifier target site (Lys-730) enhances m-tomosyn-1 inhibition of secretion without altering interaction with syntaxin1A. Together these results suggest that multiple domains outside the R-SNARE of tomosyn are critical to the efficacy of inhibition by tomosyn on exocytotic secretion.  相似文献   
128.
In recent years, both homing endonucleases (HEases) and zinc-finger nucleases (ZFNs) have been engineered and selected for the targeting of desired human loci for gene therapy. However, enzyme engineering is lengthy and expensive and the off-target effect of the manufactured endonucleases is difficult to predict. Moreover, enzymes selected to cleave a human DNA locus may not cleave the homologous locus in the genome of animal models because of sequence divergence, thus hampering attempts to assess the in vivo efficacy and safety of any engineered enzyme prior to its application in human trials. Here, we show that naturally occurring HEases can be found, that cleave desirable human targets. Some of these enzymes are also shown to cleave the homologous sequence in the genome of animal models. In addition, the distribution of off-target effects may be more predictable for native HEases. Based on our experimental observations, we present the HomeBase algorithm, database and web server that allow a high-throughput computational search and assignment of HEases for the targeting of specific loci in the human and other genomes. We validate experimentally the predicted target specificity of candidate fungal, bacterial and archaeal HEases using cell free, yeast and archaeal assays.  相似文献   
129.
130.
The evolutionary history of all life forms is usually represented as a vertical tree-like process. In prokaryotes, however, the vertical signal is partly obscured by the massive influence of horizontal gene transfer (HGT). The HGT creates widespread discordance between evolutionary histories of different genes as genomes become mosaics of gene histories. Thus, the Tree of Life (TOL) has been questioned as an appropriate representation of the evolution of prokaryotes. Nevertheless a common hypothesis is that prokaryotic evolution is primarily tree-like, and a routine effort is made to place new isolates in their appropriate location in the TOL. Moreover, it appears desirable to exploit non–tree-like evolutionary processes for the task of microbial classification. In this work, we present a novel technique that builds on the straightforward observation that gene order conservation (‘synteny’) decreases in time as a result of gene mobility. This is particularly true in prokaryotes, mainly due to HGT. Using a ‘synteny index’ (SI) that measures the average synteny between a pair of genomes, we developed the phylogenetic reconstruction tool ‘Phylo SI’. Phylo SI offers several attractive properties such as easy bootstrapping, high sensitivity in cases where phylogenetic signal is weak and computational efficiency. Phylo SI was tested both on simulated data and on two bacterial data sets and compared with two well-established phylogenetic methods. Phylo SI is particularly efficient on short evolutionary distances where synteny footprints remain detectable, whereas the nucleotide substitution signal is too weak for reliable sequence-based phylogenetic reconstruction. The method is publicly available at http://research.haifa.ac.il/ssagi/software/PhyloSI.zip.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号