首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   639篇
  免费   42篇
  681篇
  2023年   4篇
  2022年   5篇
  2021年   15篇
  2020年   7篇
  2019年   6篇
  2018年   17篇
  2017年   9篇
  2016年   17篇
  2015年   27篇
  2014年   31篇
  2013年   31篇
  2012年   40篇
  2011年   44篇
  2010年   30篇
  2009年   28篇
  2008年   44篇
  2007年   51篇
  2006年   35篇
  2005年   32篇
  2004年   24篇
  2003年   27篇
  2002年   22篇
  2001年   6篇
  2000年   6篇
  1999年   9篇
  1998年   7篇
  1997年   8篇
  1996年   4篇
  1995年   5篇
  1994年   10篇
  1993年   5篇
  1992年   6篇
  1991年   5篇
  1990年   3篇
  1989年   4篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   7篇
  1982年   4篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1978年   5篇
  1976年   3篇
  1974年   2篇
  1968年   4篇
  1967年   1篇
  1966年   3篇
  1964年   1篇
排序方式: 共有681条查询结果,搜索用时 31 毫秒
41.
Grey alder (Alnus incana) and black alder (Alnus glutinosa) stands on forest land, abandoned agricultural, and reclaimed oil-shale mining areas were investigated with the aim of analysing the functional diversity and activity of microbial communities in the soil–root interface and in the bulk soil in relation to fine-root parameters, alder species, and soil type. Biolog Ecoplates were used to determine community-level physiological profiles (CLPP) of culturable bacteria in soil–root interface and bulk soil samples. CLPP were summarized as AWCD (average well color development, OD 48 h−1) and by Shannon diversity index, which varied between 4.3 and 4.6 for soil–root interface. The soil–root interface/bulk soil ratio of AWCD was estimated. Substrate-induced respiration (SIR) and basal respiration (BAS) of bulk soil samples were measured and metabolic quotient (Q = BAS/SIR) was calculated. SIR and Q varied from 0.24 to 2.89 mg C g−1 and from 0.12 to 0.51, respectively. Short-root morphological studies were carried out by WinRHIZOTM Pro 2003b; mean specific root area (SRA) varied for grey alder and black alder from 69 to 103 and from 54 to 155 m2 kg−1, respectively. The greatest differences between AWCD values of culturable bacterial communities in soil–root interface and bulk soil were found for the young alder stands on oil-shale mining spoil and on abandoned agricultural land. Soil–root interface/bulk soil AWCD ratio, ratio for Shannon diversity indices, and SRA were positively correlated. Foliar assimilation efficiency (FOE) was negatively correlated with soil–root interface/bulk soil AWCD ratio. The impact of soil and alder species on short-root morphology was significant; short-root tip volume and mass were greater for black alder than grey alder. For the investigated microbiological characteristics, no alder-species-related differences were revealed.  相似文献   
42.
Primary skeletal muscle myoblasts have a limited proliferative capacity in cell culture and cease to proliferate after several passages. We examined the effects of several oncogenes on the immortalization and differentiation of primary cultures of rat skeletal muscle myoblasts. Retroviruses containing a SV40 large T antigen (LT) gene very efficiently immortalize myogenic cells. The immortalized cell lines retain a very high differentiation capacity and form, in the appropriate culture conditions, a very dense network of muscle fibers. As in primary culture, cell fusion is associated with the synthesis of large amounts of muscle-specific proteins. However, unlike normal myoblasts (and previously established myogenic cell lines), nuclei in the multinucleated fibers of SV40-immortalized cells synthesize DNA and enter mitosis. Thus, withdrawal from DNA synthesis is not obligatory for cell fusion and biochemical differentiation. Using a retrovirus coding for a temperature-sensitive SV40 LT, myogenic cell lines were produced in which the SV40 LT could be inactivated by a shift from 33 degrees C to 39 degrees C. The inactivation of LT induced massive cell fusion and synthesis of muscle proteins. The nuclei in those fibers did not synthesize DNA, nor did they undergo mitosis. This approach enabled the reproducible establishment of myogenic cell lines from very small populations of myoblasts or single primary myogenic clones. Activated p53 also readily immortalized cells in primary muscle cultures, however the cells of eight out of the nine cell lines isolated had a fibroblastic morphology and could not be induced to form multinucleated fibers.  相似文献   
43.
Heterogeneous cell populations form an interconnected network that determine their collective output. One example of such a heterogeneous immune population is tumor‐infiltrating lymphocytes (TILs), whose output can be measured in terms of its reactivity against tumors. While the degree of reactivity varies considerably between different TILs, ranging from null to a potent response, the underlying network that governs the reactivity is poorly understood. Here, we asked whether one can predict and even control this reactivity. To address this we measured the subpopulation compositions of 91 TILs surgically removed from 27 metastatic melanoma patients. Despite the large number of subpopulations compositions, we were able to computationally extract a simple set of subpopulation‐based rules that accurately predict the degree of reactivity. This raised the conjecture of whether one could control reactivity of TILs by manipulating their subpopulation composition. Remarkably, by rationally enriching and depleting selected subsets of subpopulations, we were able to restore anti‐tumor reactivity to nonreactive TILs. Altogether, this work describes a general framework for predicting and controlling the output of a cell mixture.  相似文献   
44.
45.
Tomosyn, a soluble R-SNARE protein identified as a binding partner of the Q-SNARE syntaxin 1A, is thought to be critical in setting the level of fusion-competent SNARE complexes for neurosecretion. To date, there has been no direct evaluation of the dynamics in which tomosyn transits through tomosyn-SNARE complexes or of the extent to which tomosyn-SNARE complexes are regulated by secretory demand. Here, we employed biochemical and optical approaches to characterize the dynamic properties of tomosyn-syntaxin 1A complexes in live adrenal chromaffin cells. We demonstrate that secretagogue stimulation results in the rapid translocation of tomosyn from the cytosol to plasma membrane regions and that this translocation is associated with an increase in the tomosyn-syntaxin 1A interaction, including increased cycling of tomosyn into tomosyn-SNARE complexes. The secretagogue-induced interaction was strongly reduced by pharmacological inhibition of the Rho-associated coiled-coil forming kinase, a result consistent with findings demonstrating secretagogue-induced activation of RhoA. Stimulation of chromaffin cells with lysophosphatidic acid, a nonsecretory stimulus that strongly activates RhoA, resulted in effects on tomosyn similar to that of application of the secretagogue. In PC-12 cells overexpressing tomosyn, secretagogue stimulation in the presence of lysophosphatidic acid resulted in reduced evoked secretory responses, an effect that was eliminated upon inhibition of Rho-associated coiled-coil forming kinase. Moreover, this effect required an intact interaction between tomosyn and syntaxin 1A. Thus, modulation of the tomosyn-syntaxin 1A interaction in response to secretagogue activation is an important mechanism allowing for dynamic regulation of the secretory response.  相似文献   
46.
Microtubules (MTs) are hollow cylindrical polymers composed of alphabeta-tubulin heterodimers that align head-to-tail in the MT wall, forming linear protofilaments that interact laterally. We introduce a probe of the interprotofilament interactions within MTs and show that this technique gives insight into the mechanisms by which MT-associated proteins (MAPs) and taxol stabilize MTs. In addition, we present further measurements of the mechanical properties of MT walls, MT-MT interactions, and the entry of polymers into the MT lumen. These results are obtained from a synchrotron small angle x-ray diffraction (SAXRD) study of MTs under osmotic stress. Above a critical osmotic pressure, P(cr), we observe rectangular bundles of MTs whose cross sections have buckled to a noncircular shape; further increases in pressure continue to distort MTs elastically. The P(cr) of approximately 600 Pa provides, for the first time, a measure of the bending modulus of the interprotofilament bond within an MT. The presence of neuronal MAPs greatly increases P(cr), whereas surprisingly, the cancer chemotherapeutic drug taxol, which suppresses MT dynamics and inhibits MT depolymerization, does not affect the interprotofilament interactions. This SAXRD-osmotic stress technique, which has enabled measurements of the mechanical properties of MTs, should find broad application for studying interactions between MTs and of MTs with MAPs and MT-associated drugs.  相似文献   
47.
48.
Uri Pick 《Biometals》2004,17(1):79-86
It is demonstrated that Antimycin A (AA), a respiratory inhibitor produced by Streptomyces bacteria, forms lipophylic complexes with Fe(III) ions. Spectroscopic titration indicates that Fe(III) ions interact with 2AA molecules. At growth-limiting Fe concentrations, AA mediates Fe uptake and promotes growth and chlorophyll synthesis better than other Fe chelators in the halotolerant alga Dunaliella salina. It is proposed that AA enhances Fe bioavailability in hypersaline solutions by formation of lipophylic Fe-AA complexes which are taken-up and utilized by the algae. The results suggest that the respiratory inhibitor AA can affect Fe metabolism in microorganisms.  相似文献   
49.
The production of transgenic roots was scored for eight Brassica oleracea cultivars from broccoli, cabbage, cauliflower and kale following inoculation with an Agrobacterium rhizogenes cell line carrying a binary plasmid bearing the green fluorescence protein (gfp) gene in the T-DNA. Significant differences in the numbers of explants producing transgenic roots were observed between cultivars, ranging from 1.4% for Marathon F1 to 57.8% for the Green Duke F1. Three F1 cultivars were subjected to anther culture, and doubled-haploid (DH) lines were used for transformation. The DH lines produced showed considerable variation for transgenic root production with some lines showing increased efficiency compared to the parental F1 cultivar. Grouping of the DH lines into response classes with respect to transgenic root production allowed the development of potential genetic models to explain the variation in performance released from each F1 cultivar. No apparent segregation distortion for transgenic root production was observed in the DH lines following anther culture.  相似文献   
50.
Myosin IIIa (Myo3A) transports cargo to the distal end of actin protrusions and contains a kinase domain that is thought to autoregulate its activity. Because Myo3A tends to cluster at the tips of actin protrusions, we investigated whether intermolecular phosphorylation could regulate Myo3A biochemical activity, cellular localization, and cellular function. Inactivation of Myo3A 2IQ kinase domain with the point mutation K50R did not alter maximal ATPase activity, whereas phosphorylation of Myo3A 2IQ resulted in reduced maximal ATPase activity and actin affinity. The rate and degree of Myo3A 2IQ autophosphorylation was unchanged by the presence of actin but was found to be dependent upon Myo3A 2IQ concentration within the range of 0.1 to 1.2 μm, indicating intermolecular autophosphorylation. In cultured cells, we observed that the filopodial tip localization of Myo3A lacking the kinase domain decreased when co-expressed with kinase-active, full-length Myo3A. The cellular consequence of reduced Myo3A tip localization was decreased filopodial density along the cell periphery, identifying a novel cellular function for Myo3A in mediating the formation and stability of actin-based protrusions. Our results suggest that Myo3A motor activity is regulated through a mechanism involving concentration-dependent autophosphorylation. We suggest that this regulatory mechanism plays an essential role in mediating the transport and actin bundle formation/stability functions of Myo3A.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号