首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   648篇
  免费   43篇
  2023年   4篇
  2022年   5篇
  2021年   13篇
  2020年   5篇
  2019年   9篇
  2018年   13篇
  2017年   10篇
  2016年   14篇
  2015年   29篇
  2014年   34篇
  2013年   39篇
  2012年   46篇
  2011年   44篇
  2010年   33篇
  2009年   25篇
  2008年   43篇
  2007年   54篇
  2006年   35篇
  2005年   30篇
  2004年   29篇
  2003年   33篇
  2002年   23篇
  2001年   2篇
  2000年   5篇
  1999年   7篇
  1998年   7篇
  1997年   8篇
  1996年   6篇
  1995年   4篇
  1994年   11篇
  1993年   7篇
  1992年   5篇
  1991年   5篇
  1990年   5篇
  1989年   2篇
  1986年   4篇
  1985年   6篇
  1984年   6篇
  1982年   4篇
  1981年   5篇
  1979年   3篇
  1978年   5篇
  1977年   1篇
  1976年   4篇
  1974年   2篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1964年   1篇
排序方式: 共有691条查询结果,搜索用时 15 毫秒
541.
A hallmark of Alzheimer’s disease is production of amyloid β peptides resulting from aberrant cleavage of the amyloid precursor protein. Amyloid β assembles into fibrils under physiological conditions, through formation of neurotoxic intermediate oligomers. Tachykinin peptides are known to affect amyloid β neurotoxicity in cells. To understand the mechanism of this effect, we studied how tachykinins affect Aβ(1–40) aggregation in vitro. Fibrils grown in the presence of tachykinins exhibited reduced thioflavin T (ThT) fluorescence, while their morphology, observed in transmission electron microscopy (TEM), did not alter. Cross linking studies revealed that the distribution of low molecular weight species was not affected by tachykinins. Our results suggest that there may be a specific interaction between tachykinins and Aβ(1–40) that allows them to co-assemble. This effect may explain the reduction of Aβ(1–40) neurotoxicity in cells treated with tachykinins.  相似文献   
542.
Virus-specific CD8 T cells are activated when their T-cell receptors (TCRs) recognize the specific viral peptide/major histocompatibility complex (MHC) class I (pMHC) complexes present on the surface of infected cells. Antibodies able to recognize the specific pMHC can mimic TCR specificity and both represent a valuable biological tool to visualize pMHC complexes on infected cells and serve as a delivery system for highly targeted therapies. To evaluate these possibilities, we created a monoclonal antibody able to specifically recognize a hepatitis B virus (HBV) envelope epitope (Env at positions 183 to 91 [Env183-91]) presented by the HLA-A201 molecule, and we tested its ability to recognize HBV-infected hepatocytes and to deliver a cargo to a specific target. We demonstrate that this antibody detects and visualizes the processed product of HBV proteins produced in naturally HBV-infected cells, is not inhibited by soluble HBV proteins present in patient sera, and mediates the intracellular delivery of a fluorescent molecule to target cells. Additionally, compared to CD8 T cells specific for the same HBV epitope, the TCR-like antibody has both a superior sensitivity and a specificity focused on distinct amino acids within the epitope. These data demonstrate that a T-cell receptor-like antibody can be used to determine the quantitative relationship between HBV replication and specific antigen presentation to CD8 T cells and serves as a novel therapeutic delivery platform for personalized health care for HBV-infected patients.  相似文献   
543.
544.
545.
Naor A  Lazary R  Barzel A  Papke RT  Gophna U 《PloS one》2011,6(1):e15833
Inteins are parasitic genetic elements, analogous to introns that excise themselves at the protein level by self-splicing, allowing the formation of functional non-disrupted proteins. Many inteins contain a homing endonuclease (HEN) gene, and rely on its activity for horizontal propagation. In the halophilic archaeon, Haloferax volcanii, the gene encoding DNA polymerase B (polB) contains an intein with an annotated but uncharacterized HEN. Here we examine the activity of the polB HEN in vivo, within its natural archaeal host. We show that this HEN is highly active, and able to insert the intein into both a chromosomal target and an extra-chromosomal plasmid target, by gene conversion. We also demonstrate that the frequency of its incorporation depends on the length of the flanking homologous sequences around the target site, reflecting its dependence on the homologous recombination machinery. Although several evolutionary models predict that the presence of an intein involves a change in the fitness of the host organism, our results show that a strain deleted for the intein sequence shows no significant changes in growth rate compared to the wild type.  相似文献   
546.
Epithelial ovarian cancer (EOC) is usually discovered after extensive metastasis have developed in the peritoneal cavity. The ovarian surface is exposed to peritoneal fluid pressures and shear forces due to the continuous peristaltic motions of the gastro-intestinal system, creating a mechanical micro-environment for the cells. An in vitro experimental model was developed to expose EOC cells to steady fluid flow induced wall shear stresses (WSS). The EOC cells were cultured from OVCAR-3 cell line on denuded amniotic membranes in special wells. Wall shear stresses of 0.5, 1.0 and 1.5 dyne/cm2 were applied on the surface of the cells under conditions that mimic the physiological environment, followed by fluorescent stains of actin and β-tubulin fibers. The cytoskeleton response to WSS included cell elongation, stress fibers formation and generation of microtubules. More cytoskeletal components were produced by the cells and arranged in a denser and more organized structure within the cytoplasm. This suggests that WSS may have a significant role in the mechanical regulation of EOC peritoneal spreading.  相似文献   
547.
Cells of undomesticated species of Bacillus subtilis frequently form complex colonies during spreading on agar surfaces. Given that menaquinone is involved in another form of coordinated behavior, namely, sporulation, we looked for a possible role for menaquinone in complex colony development (CCD) in the B. subtilis strain NCIB 3610. Here we show that inhibition of menaquinone biosynthesis in B. subtilis indeed abolished its ability to develop complex colonies. Additionally some mutations of B. subtilis which confer defective CCD could be suppressed by menaquinone derivatives. Several such mutants mapped to the dhb operon encoding the genes responsible for the biosynthesis of the iron siderophore, bacillibactin. Our results demonstrate that both menaquinone and iron are essential for CCD in B. subtilis.  相似文献   
548.
Bacterial superantigens, a diverse family of toxins, induce an inflammatory cytokine storm that can lead to lethal shock. CD28 is a homodimer expressed on T cells that functions as the principal costimulatory ligand in the immune response through an interaction with its B7 coligands, yet we show here that to elicit inflammatory cytokine gene expression and toxicity, superantigens must bind directly into the dimer interface of CD28. Preventing access of the superantigen to CD28 suffices to block its lethality. Mice were protected from lethal superantigen challenge by short peptide mimetics of the CD28 dimer interface and by peptides selected to compete with the superantigen for its binding site in CD28. Superantigens use a conserved β-strand/hinge/α-helix domain of hitherto unknown function to engage CD28. Mutation of this superantigen domain abolished inflammatory cytokine gene induction and lethality. Structural analysis showed that when a superantigen binds to the T cell receptor on the T cell and major histocompatibility class II molecule on the antigen-presenting cell, CD28 can be accommodated readily as third superantigen receptor in the quaternary complex, with the CD28 dimer interface oriented towards the β-strand/hinge/α-helix domain in the superantigen. Our findings identify the CD28 homodimer interface as a critical receptor target for superantigens. The novel role of CD28 as receptor for a class of microbial pathogens, the superantigen toxins, broadens the scope of pathogen recognition mechanisms.  相似文献   
549.
The Sec1/munc18 protein family is essential for vesicle fusion in eukaryotic cells via binding to SNARE proteins. Protein kinase C modulates these interactions by phosphorylating munc18a thereby reducing its affinity to one of the central SNARE members, syntaxin-1a. The established hypothesis is that the reduced affinity of the phosphorylated munc18a to syntaxin-1a is a result of local electrostatic repulsion between the two proteins, which interferes with their compatibility. The current study challenges this paradigm and offers a novel mechanistic explanation by revealing a syntaxin-non-binding conformation of munc18a that is induced by the phosphomimetic mutations. In the present study, using molecular dynamics simulations, we explored the dynamics of the wild-type munc18a versus phosphomimetic mutant munc18a. We focused on the structural changes that occur in the cavity between domains 3a and 1, which serves as the main syntaxin-binding site. The results of the simulations suggest that the free wild-type munc18a exhibits a dynamic equilibrium between several conformations differing in the size of its cavity (the main syntaxin-binding site). The flexibility of the cavity's size might facilitate the binding or unbinding of syntaxin. In silico insertion of phosphomimetic mutations into the munc18a structure induces the formation of a conformation where the syntaxin-binding area is rigid and blocked as a result of interactions between residues located on both sides of the cavity. Therefore, we suggest that the reduced affinity of the phosphomimetic mutant/phosphorylated munc18a is a result of the closed-cavity conformation, which makes syntaxin binding energetically and sterically unfavorable. The current study demonstrates the potential of phosphorylation, an essential biological process, to serve as a driving force for dramatic conformational changes of proteins modulating their affinity to target proteins.  相似文献   
550.
To identify bacteria with potential for influencing gut health, 980 anaerobes were cultured from the swine intestinal tract and analyzed for butyrate production. Fifteen isolates in the order Clostridiales produced butyrate and had butyryl coenzyme A (CoA):acetate CoA transferase activity. Three of the isolates grew on mucin, suggesting an intimate association with host intestinal mucosa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号