首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1234篇
  免费   104篇
  国内免费   2篇
  2022年   7篇
  2021年   16篇
  2020年   13篇
  2019年   22篇
  2018年   28篇
  2017年   15篇
  2016年   34篇
  2015年   54篇
  2014年   30篇
  2013年   66篇
  2012年   78篇
  2011年   85篇
  2010年   51篇
  2009年   47篇
  2008年   75篇
  2007年   64篇
  2006年   53篇
  2005年   52篇
  2004年   39篇
  2003年   58篇
  2002年   53篇
  2001年   32篇
  2000年   29篇
  1999年   22篇
  1998年   15篇
  1997年   7篇
  1996年   12篇
  1995年   11篇
  1993年   10篇
  1992年   20篇
  1991年   22篇
  1990年   11篇
  1989年   15篇
  1988年   15篇
  1987年   6篇
  1986年   9篇
  1985年   15篇
  1984年   6篇
  1983年   12篇
  1982年   5篇
  1979年   12篇
  1978年   15篇
  1976年   8篇
  1975年   5篇
  1974年   8篇
  1973年   6篇
  1972年   8篇
  1971年   10篇
  1970年   5篇
  1969年   8篇
排序方式: 共有1340条查询结果,搜索用时 15 毫秒
131.
132.
133.
Quantitative microscopy relies on imaging of large cell numbers but is often hampered by time-consuming manual selection of specific cells. The 'Micropilot' software automatically detects cells of interest and launches complex imaging experiments including three-dimensional multicolor time-lapse or fluorescence recovery after photobleaching in live cells. In three independent experimental setups this allowed us to statistically analyze biological processes in detail and is thus a powerful tool for systems biology.  相似文献   
134.
Stimulus properties, attention, and behavioral context influence correlations between the spike times produced by a pair of neurons. However, the biophysical mechanisms that modulate these correlations are poorly understood. With a combined theoretical and experimental approach, we show that the rate of balanced excitatory and inhibitory synaptic input modulates the magnitude and timescale of pairwise spike train correlation. High rate synaptic inputs promote spike time synchrony rather than long timescale spike rate correlations, while low rate synaptic inputs produce opposite results. This correlation shaping is due to a combination of enhanced high frequency input transfer and reduced firing rate gain in the high input rate state compared to the low state. Our study extends neural modulation from single neuron responses to population activity, a necessary step in understanding how the dynamics and processing of neural activity change across distinct brain states.  相似文献   
135.
Desmoglein 2 is a receptor for adenovirus serotypes 3, 7, 11 and 14   总被引:1,自引:0,他引:1  
We have identified desmoglein-2 (DSG-2) as the primary high-affinity receptor used by adenoviruses Ad3, Ad7, Ad11 and Ad14. These serotypes represent key human pathogens causing respiratory and urinary tract infections. In epithelial cells, adenovirus binding of DSG-2 triggers events reminiscent of epithelial-to-mesenchymal transition, leading to transient opening of intercellular junctions. This opening improves access to receptors, for example, CD46 and Her2/neu, that are trapped in intercellular junctions. In addition to complete virions, dodecahedral particles (PtDds), formed by excess amounts of viral capsid proteins, penton base and fiber during viral replication, can trigger DSG-2-mediated opening of intercellular junctions as shown by studies with recombinant Ad3 PtDds. Our findings shed light on adenovirus biology and pathogenesis and may have implications for cancer therapy.  相似文献   
136.
Aim: To explore whether ultraviolet (UV) light treatment within a closed circulating and filtered water drainage system can kill plant pathogenic species. Methods and Results: Ultraviolet experiments at 254 nm were conducted to determine the inactivation coefficients for seven plant pathogenic species. At 200 mJ cm?2, the individual species log reductions obtained for six Ascomycete fungi and a cereal virus were as follows: Leptosphaeria maculans (9·9‐log), Leptosphaeria biglobosa (7·1‐log), Barley stripe mosaic virus (BSMV) (4·1‐log), Mycosphaerella graminicola (2·9‐log), Fusarium culmorum (1·2‐log), Fusarium graminearum (0·6‐log) and Magnaporthe oryzae (0·3‐log). Dilution experiments showed that BSMV was rendered noninfectious when diluted to >1/512. Follow‐up large‐scale experiments using up to 400 l of microbiologically contaminated waste water revealed that the filtration of drainage water followed by UV treatment could successfully be used to inactivate several plant pathogens. Conclusions: By combining sedimentation, filtration and UV irradiation within a closed system, plant pathogens can be successfully removed from collected drainage water. Significance and Impact of the Study: Ultraviolet irradiation is a relatively low cost, energy efficient and labour nonintensive method to decontaminate water arising from a suite of higher biological containment level laboratories and plant growth rooms where genetically modified and/or quarantine fungal and viral plant pathogenic organisms are being used for research purposes.  相似文献   
137.
Intracellular bacteria of the genus Wolbachia are widespread endosymbionts across diverse insect taxa. Despite this prevalence, our understanding of how Wolbachia persists within populations is not well understood. Cytoplasmic incompatibility (CI) appears to be an important phenotype maintaining Wolbachia in many insects, but it is believed to be too weak to maintain Wolbachia in Drosophila melanogaster, suggesting that Wolbachia must also have other effects on this species. Here we estimate the net selective effect of Wolbachia on its host in a laboratory-adapted population of D. melanogaster, to determine the mechanisms leading to its persistence in the laboratory environment. We found i) no significant effects of Wolbachia infection on female egg-to-adult survival or adult fitness, ii) no reduced juvenile survival in males, iii) substantial levels of CI, and iv) a vertical transmission rate of Wolbachia higher than 99%. The fitness of cured females was, however, severely reduced (a decline of 37%) due to CI in offspring. Taken together these findings indicate that Wolbachia is maintained in our laboratory environment due to a combination of a nearly perfect transmission rate and substantial CI. Our results show that there would be strong selection against females losing their infection and producing progeny free from Wolbachia.  相似文献   
138.

Background

SoPIP2;1 constitutes one of the major integral proteins in spinach leaf plasma membranes and belongs to the aquaporin family. SoPIP2;1 is a highly permeable and selective water channel that has been successfully overexpressed and purified with high yields. In order to optimize reconstitution of the purified protein into biomimetic systems, we have here for the first time characterized the structural stability of SoPIP2;1.

Methodology/Principal Finding

We have characterized the protein structural stability after purification and after reconstitution into detergent micelles and proteoliposomes using circular dichroism and fluorescence spectroscopy techniques. The structure of SoPIP2;1 was analyzed either with the protein solubilized with octyl-β-D-glucopyranoside (OG) or reconstituted into lipid membranes formed by E. coli lipids, diphytanoylphosphatidylcholine (DPhPC), or reconstituted into lipid membranes formed from mixtures of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPE), 1-palmitoyl-2oleoyl-phosphatidylethanolamine (POPE), 1-palmitoyl-2-oleoyl-phosphatidylserine (POPS), and ergosterol. Generally, SoPIP2;1 secondary structure was found to be predominantly α-helical in accordance with crystallographic data. The protein has a high thermal structural stability in detergent solutions, with an irreversible thermal unfolding occurring at a melting temperature of 58°C. Incorporation of the protein into lipid membranes increases the structural stability as evidenced by an increased melting temperature of up to 70°C.

Conclusion/Significance

The results of this study provide insights into SoPIP2;1 stability in various host membranes and suggest suitable choices of detergent and lipid composition for reconstitution of SoPIP2;1 into biomimetic membranes for biotechnological applications.  相似文献   
139.
T-cell based IFN-γ release assays do not permit distinction of active tuberculosis (TB) from successfully treated disease or latent M. tuberculosis infection. We postulated that IFN-γ and IL-2 cytokine profiles of antigen-specific T cells measured by flow-cytometry ex vivo might correlate with TB disease activity in vivo. Tuberculin (PPD), ESAT-6 and CFP-10 were used as stimuli to determine antigen-specific cytokine profiles in CD4 T cells from 24 patients with active TB and 28 patients with successfully treated TB using flow-cytometry. Moreover, 25 individuals with immunity consistent with latent M. tuberculosis infection and BCG-vaccination, respectively, were recruited. Although the frequency of cytokine secreting PPD reactive CD4 T cells was higher in patients with active TB compared to patients with treated TB (median 0.81% vs. 0.39% of CD4 T cells, p?=?0.02), the overlap in frequencies precluded distinction between the groups on an individual basis. When assessing cytokine profiles, PPD specific CD4 T cells secreting both IFN-γ and IL-2 predominated in treated TB, latent infection and BCG-vaccination, whilst in active TB the cytokine profile was shifted towards cells secreting IFN-γ only (p<0.0001). Cytokine profiles of ESAT-6 or CFP-10 reactive CD4 T cells did not differ between the groups. Receiver operator characteristics (ROC) analysis revealed that frequencies of PPD specific IFN-γ/IL-2 dual-positive T cells below 56% were an accurate marker for active TB (specificity 100%, sensitivity 70%) enabling effective discrimination from non-active states. In conclusion, a frequency lower than 56% IFN-γ/IL-2 dual positive PPD-specific circulating CD4 T-cells is strongly indicative of active TB.  相似文献   
140.
In our studies of ovarian cancer cells we have identified subpopulations of cells that are in a transitory E/M hybrid stage, i.e. cells that simultaneously express epithelial and mesenchymal markers. E/M cells are not homogenous but, in vitro and in vivo, contain subsets that can be distinguished based on a number of phenotypic features, including the subcellular localization of E-cadherin, and the expression levels of Tie2, CD133, and CD44. A cellular subset (E/M-MP) (membrane E-cadherin(low)/cytoplasmic E-cadherin(high)/CD133(high), CD44(high), Tie2(low)) is highly enriched for tumor-forming cells and displays features which are generally associated with cancer stem cells. Our data suggest that E/M-MP cells are able to differentiate into different lineages under certain conditions, and have the capacity for self-renewal, i.e. to maintain a subset of undifferentiated E/M-MP cells during differentiation. Trans-differentiation of E/M-MP cells into mesenchymal or epithelial cells is associated with a loss of stem cell markers and tumorigenicity. In vivo xenograft tumor growth is driven by E/M-MP cells, which give rise to epithelial ovarian cancer cells. In contrast, in vitro, we found that E/M-MP cells differentiate into mesenchymal cells, in a process that involves pathways associated with an epithelial-to-mesenchymal transition. We also detected phenotypic plasticity that was dependent on external factors such as stress created by starvation or contact with either epithelial or mesenchymal cells in co-cultures. Our study provides a better understanding of the phenotypic complexity of ovarian cancer and has implications for ovarian cancer therapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号