首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1234篇
  免费   105篇
  国内免费   2篇
  1341篇
  2023年   6篇
  2022年   7篇
  2021年   16篇
  2020年   13篇
  2019年   22篇
  2018年   28篇
  2017年   15篇
  2016年   34篇
  2015年   54篇
  2014年   30篇
  2013年   66篇
  2012年   78篇
  2011年   85篇
  2010年   51篇
  2009年   47篇
  2008年   75篇
  2007年   64篇
  2006年   53篇
  2005年   52篇
  2004年   39篇
  2003年   58篇
  2002年   53篇
  2001年   32篇
  2000年   29篇
  1999年   22篇
  1998年   15篇
  1997年   7篇
  1996年   12篇
  1995年   11篇
  1993年   10篇
  1992年   20篇
  1991年   22篇
  1990年   11篇
  1989年   14篇
  1988年   15篇
  1987年   6篇
  1986年   9篇
  1985年   15篇
  1984年   6篇
  1983年   12篇
  1979年   12篇
  1978年   15篇
  1976年   8篇
  1975年   5篇
  1974年   8篇
  1973年   6篇
  1972年   8篇
  1971年   10篇
  1970年   5篇
  1969年   8篇
排序方式: 共有1341条查询结果,搜索用时 15 毫秒
101.
102.
Both ecological and evolutionary mechanisms have been proposed to describe how natural communities become assembled at both regional and biogeographical scales. Yet, these theories have largely been developed in isolation. Here, we unite these separate views and develop an integrated eco‐evolutionary framework of community assembly. We use a simulation approach to explore the factors determining the interplay between ecological and evolutionary mechanisms systematically across spatial scales. Our results suggest that the same set of ecological and evolutionary processes can determine community assembly at both regional and biogeographical scales. We find that the importance of evolution and community monopolization effects, defined as the eco‐evolutionary dynamics that occur when local adaptation of early established immigrants is fast enough to prevent the later immigration of better pre‐adapted species, are not restricted to adaptive radiations on remote islands. They occur at dispersal rates of up to ten individuals per generation, typical for many species at the scale of regional metacommunities. Dispersal capacity largely determines whether ecological species sorting or evolutionary monopolization structure metacommunity diversity and distribution patterns. However, other factors related to the spatial scale at which community assembly processes are acting, such as metacommunity size and the proportion of empty patches, also affect the relative importance of ecology versus evolution. We show that evolution often determines community assembly, and this conclusion is robust to a wide range of assumptions about spatial scale, mode of reproduction, and environmental structure. Moreover, we found that community monopolization effects occur even though species fully pre‐adapted to each habitat are abundant in the metacommunity, a scenario expected a priori to prevent any meaningful effect of evolution. Our results strongly support the idea that the same eco‐evolutionary processes underlie community assembly at regional and biogeographical scales.  相似文献   
103.
Microfluidic jetting is a promising method to produce giant unilamellar phospholipid vesicles for mimicking living cells in biomedical studies. We have investigated the chemical composition of membranes of vesicles prepared using this approach by means of Raman scattering spectroscopy. The membranes of all jetted vesicles are found to contain residuals of the organic solvent decane used in the preparation of the initial planar membrane. The decane inclusions are randomly distributed over the vesicle surface area and vary in thickness from a few to several tens of nanometers. Our findings point out that the membrane properties of jetted vesicles may differ considerably from those of vesicles prepared by other methods and from those of living cells. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
104.
KCl causes smooth muscle contraction by elevating intracellular free Ca2+, whereas receptor stimulation activates an additional mechanism, termed Ca2+ sensitization, that can involve activation of RhoA-associated kinase (ROK) and PKC. However, recent studies support the hypothesis that KCl may also increase Ca2+ sensitivity. Our data showed that the PKC inhibitor GF-109203X did not, whereas the ROK inhibitor Y-27632 did, inhibit KCl-induced tonic (5 min) force and myosin light chain (MLC) phosphorylation in rabbit artery. Y-27632 also inhibited BAY K 8644- and ionomycin-induced MLC phosphorylation and force but did not inhibit KCl-induced Ca2+ entry or peak ( approximately 15 s) force. Moreover, KCl and BAY K 8644 nearly doubled the amount of ROK colocalized to caveolae at 30 s, a time that preceded inhibition of force by Y-27632. Colocalization was not inhibited by Y-27632 but was abolished by nifedipine and the calmodulin blocker trifluoperazine. These data support the hypothesis that KCl caused Ca2+ sensitization via ROK activation. We discuss a novel model for ROK activation involving translocation to caveolae that is dependent on Ca2+ entry and involves Ca2+-calmodulin activation.  相似文献   
105.
Urban  O. 《Photosynthetica》2003,41(1):9-20
The dynamics of the terrestrial ecosystems depend on interactions between a number of biogeochemical cycles (i.e. carbon, nutrient, and hydrological cycles) that may be modified by human actions. Conversely, terrestrial ecosystems are important components of these cycles that create the sources and sinks of important greenhouse gases (e.g. carbon dioxide, methane, nitrous oxide). Especially, carbon is exchanged naturally among these ecosystems and the atmosphere through photosynthesis, respiration, decomposition, and combustion processes. Continuous increase of atmospheric carbon dioxide (CO2) concentration has led to extensive research over the last two decades, during which more then 1 400 scientific papers describing impacts of elevated [CO2] (EC) on photosynthesis have been published. However, the degree of response is very variable, depending on species, growing conditions, mineral nutrition, and duration of CO2 enrichment. In this review, I have summarised the major physiological responses of plants, in particular of trees, to EC including molecular and primary, especially photosynthetic, physiological responses. Likewise, secondary (photosynthate translocation and plant water status) and tertiary whole plant responses including also plant to plant competition are shown.  相似文献   
106.
107.
Extracellular levels of dopamine (DA) and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), in the striatum and frontoparietal (sensorimotor) cortex in halothane-anesthetized rats were analyzed simultaneously using in vivo microdialysis. Basal DA levels, measured from the microdialysis perfusate, were 6.4 +/- 0.8 nM (n = 15) in the striatum and 0.9 +/- 0.1 nM (n = 15) in the frontoparietal cortex. Subcutaneous injections of d-amphetamine (2 mg/kg) increased DA levels 10-fold in the striatum and fivefold in the cortex. Injections of substance P (0.07 nmol/0.2 microliters) into the substantia nigra pars reticulata (SNR) increased DA and DOPAC levels approximately 30% in the ipsilateral striatum and approximately 50% in the ipsilateral frontoparietal cortex. Injections of neurokinin A (0.09 nmol/0.2 microliter) into the SNR increased DA and DOPAC levels approximately 30% in the ipsilateral striatum but did not significantly affect DA levels in the ipsilateral frontoparietal cortex, although DOPAC levels were increased by approximately 50%. It is suggested that striatal and cortical DA release is regulated differently by nigral substance P and neurokinin A terminals.  相似文献   
108.
109.
110.
The X chromosome constitutes a unique genomic environment because it is present in one copy in males, but two copies in females. This simple fact has motivated several theoretical predictions with respect to how standing genetic variation on the X chromosome should differ from the autosomes. Unmasked expression of deleterious mutations in males and a lower census size are expected to reduce variation, while allelic variants with sexually antagonistic effects, and potentially those with a sex-specific effect, could accumulate on the X chromosome and contribute to increased genetic variation. In addition, incomplete dosage compensation of the X chromosome could potentially dampen the male-specific effects of random mutations, and promote the accumulation of X-linked alleles with sexually dimorphic phenotypic effects. Here we test both the amount and the type of genetic variation on the X chromosome within a population of Drosophila melanogaster, by comparing the proportion of X linked and autosomal trans-regulatory SNPs with a sexually concordant and discordant effect on gene expression. We find that the X chromosome is depleted for SNPs with a sexually concordant effect, but hosts comparatively more SNPs with a sexually discordant effect. Interestingly, the contrasting results for SNPs with sexually concordant and discordant effects are driven by SNPs with a larger influence on expression in females than expression in males. Furthermore, the distribution of these SNPs is shifted towards regions where dosage compensation is predicted to be less complete. These results suggest that intrinsic properties of dosage compensation influence either the accumulation of different types of trans-factors and/or their propensity to accumulate mutations. Our findings document a potential mechanistic basis for sex-specific genetic variation, and identify the X as a reservoir for sexually dimorphic phenotypic variation. These results have general implications for X chromosome evolution, as well as the genetic basis of sex-specific evolutionary change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号