首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
  2023年   1篇
  2021年   1篇
  2017年   2篇
  2016年   2篇
  2013年   1篇
  2012年   3篇
  2011年   7篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1996年   1篇
  1971年   1篇
排序方式: 共有34条查询结果,搜索用时 126 毫秒
31.
Autotrophic picoplankton (<3 microm) composed of both prokaryotes and eukaryotes are the most abundant primary producers on Earth. In this study we examined the ingestion of the picoeukaryote Ostreococcus tauri by different marine heterotrophic nanoflagellates (HNF) with various morphologies, swimming and feeding behaviours. Cultures of specific bacterivorous nanoflagellates (Rhynchomonas nasuta, Jakoba libera, and a culture of Cafeteria sp./Monosiga sp.) and natural nanoflagellate populations were used as grazers. For comparison with Ostreococcus, we used similar-sized prokaryotes as prey, Prochlorococcus and Synechococcus. We observed large species-specific differences in terms of: use of picoautotrophs among nanoflagellates, time lag between prey addition and prey consumption (0-196 h), grazing rate (0-0.12 h(-1)), growth rate (0-0.3 h(-1)) and maximum abundance of HNF reached in experimental bottles (e.g. from 10(4) to 10(5) cells ml(-1), for a natural coastal population and a Cafeteria sp./Monosiga sp. culture feeding Ostreococcus respectively). Overall, this study shows that the nanoflagellate community composition is conclusive for picoautotrophic community structure and, vice versa, the picoautotrophic community structure favours or inhibits the growth of some nanoflagellate groups.  相似文献   
32.
An enrichment culture technique was used for the isolation of microorganisms responsible for the enhanced biodegradation of the nematicide cadusafos in soils from a potato monoculture area in Northern Greece. Mineral salts medium supplemented with nitrogen (MSMN), where cadusafos (10 mg l(-1)) was the sole carbon source, and soil extract medium (SEM) were used for the isolation of cadusafos-degrading bacteria. Two pure bacterial cultures, named CadI and CadII, were isolated and subsequently characterized by sequencing of 16S rRNA genes. Isolate CadI showed 97.4% similarity to the 16S rRNA gene of a Flavobacterium strain, unlike CadII which showed 99.7% similarity to the 16S rRNA gene of a Sphingomonas paucimobilis. Both isolates rapidly metabolized cadusafos in MSMN and SEM within 48 h with concurrent population growth. This is the first report for the isolation and characterization of soil bacteria with the ability to degrade rapidly cadusafos and use it as a carbon source. Degradation of cadusafos by both isolates was accelerated when MSMN was supplemented with glucose. In contrast, addition of succinate in MSMN marginally reduced the degradation of cadusafos. Both isolates were also able to degrade completely ethoprophos, a nematicide chemical analog of cadusafos, but did not degrade the other organophosphorus nematicides tested such as isazofos and isofenphos. Inoculation of a soil freshly treated with cadusafos or ethoprophos (10 mg l(-1)) with high inoculum densities (4.3 x 10(8) cells g(-1)) of Sphingomonas paucimobilis resulted in the rapid degradation of both nematicides. These results indicate the potential of this bacterium to be used in the clean-up of contaminated pesticide waste in the environment.  相似文献   
33.
The structure of the planktonic community and the influence of mesozooplankton migration on the microbial food web were investigated during six diel studies from June 92 to June 93 in the surface waters of a station in the North-Western Mediterranean Sea. Each diel study consisted of sampling at 5 and 40 m every 3 h over 24 h. Most of the times diel cycles did not show any convincing diel patterns in any of the variables studied. Clear zooplankton migration was evident in only two diel studies.The ratio of heterotrophic/autotrophic biomasses varied from 0.68 to 3.0, with a strong dominance of the heterotrophic biomass under oligotrophic conditions. Differences in food web structure were probably related to the influences of coastal water and the North-Western Mediterranean Current. Thus we found that the planktonic food web variability relatable to hydrodynamic variability, to be greater than diel variability. However, very large differences in food web structure among dates were evident. For example proportion of Chl a found in the <10 µm fraction varied from 18 to 96%.  相似文献   
34.
Temporal dynamics of Syndiniales Group II were investigated combining 18S rDNA amplicon sequencing and direct microscopy counts (fluorescence in situ hybridization-tyramide signal amplification [FISH-TSA]) during 5 years. The study was undertaken in meso-eutrophic coastal ecosystem, dominated by diatoms, the haptophyte Phaeocystis globosa and exhibiting relatively low dinoflagellate abundance (max. 18.6 × 103 cells L−1). Consistent temporal patterns of Syndiniales Group II were observed over consecutive years highlighting the existence of local populations. According to sequencing data, Syndiniales Group II showed increasing abundance and richness in summer and autumn. Dinospores counted by microscopy, were present at low abundances and were punctuated by transient peaks. In summer dinospore highest abundance (559 × 103 L−1) and prevalence (38.5%) coincided with the peak abundance of the dinoflagellate Prorocentrum minimum (13 × 103 L−1) while in autumn Syndiniales Group II likely had more diversified hosts. Although, several peaks of dinospore and read abundances coincided, there was no consistent relation between them. Ecological assembly processes at a seasonal scale revealed that stochastic processes were the main drivers (80%) of the Group II community assembly, though deterministic processes were noticeable (20%) in June and July. This latter observation may reflect the specific Syndiniales—dinoflagellate interactions in summer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号