首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   11篇
  165篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   5篇
  2012年   5篇
  2011年   2篇
  2010年   5篇
  2009年   9篇
  2008年   1篇
  2007年   1篇
  2006年   10篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   8篇
  1998年   4篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   6篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   7篇
  1980年   1篇
  1979年   11篇
  1978年   12篇
  1977年   5篇
  1975年   3篇
  1974年   8篇
  1973年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有165条查询结果,搜索用时 0 毫秒
81.
82.
In prokaryotes, lateral gene transfer across chromosomal lineages may be mediated by plasmids, phages, transposable elements, and other accessory DNA elements. However, the importance of such transfer and the evolutionary forces that may restrict gene exchange remain largely unexplored in native settings. In this study, tests of phylogenetic congruence are employed to explore the range of horizontal transfer of symbiotic (sym) loci among distinct chromosomal lineages of native rhizobia, the nitrogen-fixing symbiont of legumes. Rhizobial strains isolated from nodules of several host plant genera were sequenced at three loci: symbiotic nodulation genes (nodB and nodC), the chromosomal housekeeping locus glutamine synthetase II (GSII), and a portion of the 16S rRNA gene. Molecular phylogenetic analysis shows that each locus generally subdivides strains into the same major groups, which correspond to the genera Rhizobium, Sinorhizobium, and Mesorhizobium. This broad phylogenetic congruence indicates a lack of lateral transfer across major chromosomal subdivisions, and it contrasts with previous studies of agricultural populations showing broad transfer of sym loci across divergent chromosomal lineages. A general correspondence of the three rhizobial genera with major legume groups suggests that host plant associations may be important in the differentiation of rhizobial nod and chromosomal loci and may restrict lateral transfer among strains. The second major result is a significant incongruence of nod and GSII phylogenies within rhizobial subdivisions, which strongly suggests horizontal transfer of nod genes among congenerics. This combined evidence for lateral gene transfer within, but not between, genetic subdivisions supports the view that rhizobial genera are "reproductively isolated" and diverge independently. Differences across rhizobial genera in the specificity of host associations imply that the evolutionary dynamics of the symbiosis vary considerably across lineages in native settings.   相似文献   
83.
84.
85.
86.
Silencing of tumor suppressor genes (TSGs) by DNA promoter hypermethylation is an early event in carcinogenesis and a potential target for personalized cancer treatment. In head and neck cancer, little is known about the role of promoter hypermethylation in survival. Using methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) we investigated the role of promoter hypermethylation of 24 well-described genes (some of which are classic TSGs), which are frequently methylated in different cancer types, in 166 HPV-negative early oral squamous cell carcinomas (OSCC), and 51 HPV-negative early oropharyngeal squamous cell carcinomas (OPSCC) in relation to clinicopathological features and survival. Early OSCC showed frequent promoter hypermethylation in RARB (31% of cases), CHFR (20%), CDH13 (13%), DAPK1 (12%), and APC (10%). More hypermethylation (≥ 2 genes) independently correlated with improved disease specific survival (hazard ratio 0.17, P = 0.014) in early OSCC and could therefore be used as prognostic biomarker. Early OPSCCs showed more hypermethylation of CDH13 (58%), TP73 (14%), and total hypermethylated genes. Hypermethylation of two or more genes has a significantly different effect on survival in OPSCC compared with OSCC, with a trend toward worse instead of better survival. This could have a biological explanation, which deserves further investigation and could possibly lead to more stratified treatment in the future.  相似文献   
87.
Evolution of arthropod hemocyanins and insect storage proteins (hexamerins)   总被引:4,自引:2,他引:4  
Crustacean and cheliceratan hemocyanins (oxygen-transport proteins) and insect hexamerins (storage proteins) are homologous gene products, although the latter do not bind oxygen and do not possess the copper- binding histidines present in the hemocyanins. An alignment of 19 amino acid sequences of hemocyanin subunits and insect hexamerins was made, based on the conservation of elements of secondary structure observed in X-ray structures of two hemocyanin subunits. The alignment was analyzed using parsimony and neighbor-joining methods. Results provide strong indications for grouping together the sequences of the 2 crustacean hemocyanin subunits, the 5 cheliceratan hemocyanin subunits, and the 12 insect hexamerins. Within the insect clade, four methionine- rich proteins, four arylphorins, and two juvenile hormone-suppressible proteins from Lepidoptera, as well as two dipteran proteins, form four separate groups. In the absence of an outgroup sequence, it is not possible to present information about the ancestral state from which these proteins are derived. Although this family of proteins clearly consists of homologous gene products, there remain striking differences in gene organization and site of biosynthesis of the proteins within the cell. Because studies on 18S and 12S rRNA sequences indicate a rather close relationship between insects and crustaceans, we propose that hemocyanin is the ancestral arthropod protein and that insect hexamerins lost their copper-binding capability after divergence of the insects from the crustaceans.   相似文献   
88.
89.
90.
Being born small for gestational age (SGA), a proxy for intrauterine growth restriction (IUGR) and prenatal famine exposure are both associated with a greater risk of metabolic disease. Both associations have been hypothesized to involve epigenetic mechanisms. We investigated whether prenatal growth restriction early in pregnancy was associated with changes in DNA methylation at loci that were previously shown to be sensitive to early gestational famine exposure. We compared 38 individuals born preterm (<32 weeks) and with a birth weight too low for their gestational age (less than −1SDS; SGA) with 75 individuals born preterm but with a birth weight appropriate for their gestational age (greater than −1SDS) and a normal postnatal growth (greater than −1SDS at three months post term; AGA). The SGA individuals were not only lighter at birth, but also had a smaller length (p = 3.3 × 10−13) and head circumference at birth (p = 4.1 × 10−13). The DNA methylation levels of IGF2, GNASAS, INSIGF and LEP were 48.5, 47.5, 79.4 and 25.7% respectively. This was not significantly different between SGA and AGA individuals. Risk factors for being born SGA, including preeclampsia and maternal smoking, were also not associated with DNA methylation at these loci. Growth restriction early in development is not associated with DNA methylation at loci shown to be affected by prenatal famine exposure. Our and previous results by others indicate that prenatal growth restriction and famine exposure may be associated with different epigenetic changes or non-epigenetic mechanisms that may lead to similar later health outcomes.Key words: SGA, DOHAD, IUGR, DNA methylation, famine, IGF2, LEP, INS, GNASAS  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号