首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1249篇
  免费   116篇
  2022年   16篇
  2021年   36篇
  2020年   18篇
  2019年   24篇
  2018年   28篇
  2017年   28篇
  2016年   36篇
  2015年   41篇
  2014年   45篇
  2013年   78篇
  2012年   73篇
  2011年   86篇
  2010年   38篇
  2009年   37篇
  2008年   47篇
  2007年   76篇
  2006年   45篇
  2005年   39篇
  2004年   49篇
  2003年   33篇
  2002年   30篇
  2001年   34篇
  2000年   29篇
  1999年   25篇
  1998年   12篇
  1997年   11篇
  1995年   9篇
  1994年   11篇
  1993年   7篇
  1992年   26篇
  1991年   28篇
  1990年   24篇
  1989年   26篇
  1988年   14篇
  1987年   12篇
  1986年   12篇
  1985年   16篇
  1984年   8篇
  1983年   7篇
  1981年   8篇
  1980年   6篇
  1979年   16篇
  1978年   16篇
  1977年   6篇
  1976年   6篇
  1973年   7篇
  1972年   10篇
  1971年   9篇
  1966年   7篇
  1964年   5篇
排序方式: 共有1365条查询结果,搜索用时 109 毫秒
881.
In this study, we attempted to understand the mechanism of regulation of the activity and allosteric behavior of the pyruvate kinase M2 enzyme and two of its missense mutations, H391Y and K422R, found in cells from Bloom syndrome patients, prone to develop cancer. Results show that despite the presence of mutations in the intersubunit contact domain, the K422R and H391Y mutant proteins maintained their homotetrameric structure, similar to the wild-type protein, but showed a loss of activity of 75 and 20%, respectively. Interestingly, H391Y showed a 6-fold increase in affinity for its substrate phosphoenolpyruvate and behaved like a non-allosteric protein with compromised cooperative binding. However, the affinity for phosphoenolpyruvate was lost significantly in K422R. Unlike K422R, H391Y showed enhanced thermal stability, stability over a range of pH values, a lesser effect of the allosteric inhibitor Phe, and resistance toward structural alteration upon binding of the activator (fructose 1,6-bisphosphate) and inhibitor (Phe). Both mutants showed a slight shift in the pH optimum from 7.4 to 7.0. Although this study signifies the importance of conserved amino acid residues in long-range communications between the subunits of multimeric proteins, the altered behavior of mutants is suggestive of their probable role in tumor-promoting growth and metabolism in Bloom syndrome patients with defective pyruvate kinase M2.Pyruvate kinase (PK3; EC 2.7.1.40), a pacemaker of the glycolytic pathway, catalyzes irreversibly the transphosphorylation from P-enolpyruvate to ADP, generating pyruvate and ATP (1, 2). There are four different isozymes (L, R, M1, and M2) in mammalian tissues, which differ in their regulatory properties. These isozymes are allosteric in nature with the exception of the M1 form, present in skeletal muscle and brain (37). PKM2 is a ubiquitous prototype enzyme present in all tissues during the embryonic stage and is gradually replaced by other isozymic forms in specific tissues during development. The M2, L, and R isozymes show homotropic cooperative activation with P-enolpyruvate and heterotropic cooperative activation with Fru-1,6-P2 (810). The M1 isozyme is regulated by neither P-enolpyruvate nor Fru-1,6-P2 because of its intrinsic active conformation in the R-state (5, 6). Under unfavorable conditions such as hypoxia and lack of glucose supply, the anaerobic tissues and tumor cells rely heavily on PKM2 for ATP production (7). Therefore, stringent control of PK activity is of great importance not only for cell metabolism but also for tumorigenic proliferation.The M1 and M2 isozymes are produced from a single gene locus by mutually exclusive alternative splicing (1114). In the human M1 and M2 isozymes, the exon that is exchanged because of alternative splicing encodes 56 amino acids, in which a total of 22 amino acids differ within a length of 45 residues. The residues located in this region form the major intersubunit contact domain (8). The distinguishable kinetic properties of the M1 and M2 isozymes are attributed to these amino acid substitutions. It has been shown by x-ray crystallographic analyses and computer modeling that the corresponding regions of their polypeptides participate directly in the intersubunit contact, which is responsible for the intersubunit communication required for allosteric cooperativity (8, 15).PK has been largely conserved throughout evolution. The enzyme is usually a homotetramer composed of four identical subunits, and each subunit consists of four domains: the A-, B-, and C-domains and the N-terminal domain. The structure of human PKM2 was recently determined in complex with inhibitors (16). In mammalian cells, PK activity is regulated by two different mechanisms: one at the level of expression and the other through allosteric regulation. The catalytic site usually composes a small part of the enzyme, but allosteric control is transmitted over a long range, thus increasing the number of possible residues involved in regulation. The allosteric transition in PK involves mutual rotations of the A- and C-domains within each subunit and the subunit within the tetramer (14). The residues at the subunit interfaces have the critical function of relaying the allosteric signal from and to the catalytic and regulatory sites. This region also transmits the allosteric signal between P-enolpyruvate- and Fru-1,6-P2-binding sites. Despite the availability of structural details of several PK isozymes, it is difficult to identify the structural elements that play an important role in PK regulation and propagation of the allosteric signals. Although the role of some of the PK residues (positions 340, 389, 398, 401, 402, 408, 423, and 427) has been studied in allosteric regulation (10, 1719) by in vitro site-directed mutagenesis, the absence of these mutations in any naturally occurring condition presents limitations in attributing a biological role to the introduced changes.The natural mutations H391Y and K422R (reported previously as K421R) were reported by us for the first time in the PKM2 gene in a Bloom syndrome cell line and in the lymphocytes of an Indian Bloom syndrome patient, respectively (20). The two missense mutations, located in the region of the intersubunit contact domain (Fig. 1, A and B), presented with the biochemical phenotype of down-regulated enzyme activity to different extents (20) and were expected to influence the allosteric nature of the enzyme. The regulatory behavior of allosteric PK has been described by a two-state model that proposes an active (R) and an inactive (T) form of the macromolecule with differential affinity for ligands (15). Upon binding of the substrate or its analogs, the enzyme undergoes a transition from a low activity/low affinity conformation (T state) to a high activity/high affinity conformation (R state). The binding of phenylalanine produces a global structural change and exhibits reduced affinity for substrate P-enolpyruvate in the T state (2123). Previous studies have demonstrated that each individual domain acts as a rigid body and that, upon transition from the T to the R state, the domain of the functional tetramer modifies its relative orientation by 29°. These movements bring conformational change to the active site, which, upon transition to the T state, undergoes a distortion of the P-enolpyruvate-binding site (24).Open in a separate windowFIGURE 1.A, ribbon diagram of the overall structure of PK showing the positions of the two mutations, H391Y and K422R, along with the active site and Fru-1,6-P2-binding site. B, intersubunit contact domain of PK. The major amino acid residues and side chains at the tetramer interface region are shown.Because the mutations observed by us previously (20) are located at highly conserved positions not only in different isozymic forms but also across the species (supplemental Fig. S1) and are observed in the genetic background of a syndrome prone to cancer in early age, a study related to the structure-function correlations of these mutations is likely to provide insight into their possible biological importance, especially in the context of recent research highlighting the importance of PKM2 in tumor promotion and growth. In this study, we investigated the role of the two natural missense mutations, after site-directed mutagenesis in the PKM2 gene, in the regulation of allosteric properties as well as their effects on the secondary and tertiary structures in comparison with wild-type PKM2 (PK-WT). An attempt has also been made to understand the effects of these mutations at the interface of the subunits on the signal transmission pathway within the protein.  相似文献   
882.
883.
Aims: To study the prevalence and characterize atypical enteropathogenic Escherichia coli (EPEC) and Shiga toxin producing E. coli (STEC) in avian species in India. Methods and Results: Two hundred and twelve faecal samples collected from 62 chickens, 50 ducks and 100 pigeons were investigated for the presence of stx1, stx2, eae and ehxA virulence genes by multiplex PCR. In all, 42 E. coli isolates (25 chicken, 2 duck and 15 pigeon) possessed at least one virulence gene. Out of these, nine (4·24%) isolates were STEC and 33 (15·56%) were EPEC. All isolates from duck and chicken were EPEC while among 15 pigeon isolates nine (60%) were STEC and six (40%) were EPEC. Among the STEC isolates four each carried stx1 or stx2 and one possessed both stx1 and stx2. Subtype analysis of stx revealed the presence of stx2f in four STEC isolates. None of the STEC isolates carried stx1c, stx2c, stx2d or stx2e. Isolates carrying stx2f demonstrated vero cell toxicity. One each belonged to serogroup O17 and O78, while one was rough and the other untypeable. All EPEC isolates were atypical as they lacked bfpA. This appears to be the first report of detection of stx2f from India. Conclusions: The study established the presence of stx1 and stx2f containing E. coli in pigeons and atypical EPEC in poultry in India. Pigeons might serve as vectors for transmission of STEC to environment and humans. Significance and Impact of the Study: Taking into account the close contact between fanciers and pigeons, these findings warrant a more critical appraisal of these zoonotic pathogens in pigeons and humans.  相似文献   
884.

Background

Retinal dehydrogenases (RALDHs) catalyze the dehydrogenation of retinal into retinoic acids (RAs), which are required for embryogenesis and tissue differentiation. This study sought to determine the detailed kinetic properties of 2 mouse RALDHs, namely RALDH3 and 4, for retinal isomer substrates, to better define their specificities in RA isomer synthesis.

Methods

RALDH3 and 4 were expressed in Escherichia coli as His-tagged proteins and affinity-purified. Enzyme kinetics were performed with retinal isomer substrates. The enzymatic products were analyzed by high pressure liquid chromatography.

Results

RALDH3 oxidized all-trans retinal with high catalytic efficiency (Vmax/Km = 77.9) but did not show activity for either 9-cis or 13-cis retinal substrates. On the other hand, RALDH4 was inactive for all-trans retinal substrate, exhibited high activity for 9-cis retinal oxidation (Vmax/Km = 27.4), and oxidized 13-cis retinal with lower catalytic efficiency (Vmax/Km = 8.24). β-ionone, a potent inhibitor of RALDH4 activity, suppressed 9-cis and 13-cis retinal oxidation competitively with inhibition constants of 0.60 and 0.32, respectively, but had no effect on RALDH3 activity. The divalent cation MgCl2 activated 13-cis retinal oxidation by RALDH4 by 3-fold, did not significantly influence 9-cis retinal oxidation, and slightly activated RALDH3 activity.

Conclusions

These data extend the kinetic characterization of RALDH3 and 4, providing their specificities for retinal isomer substrates.

General significance

The kinetic characterization of RALDHs should give useful information in determining amino acid residues that are involved in the specificity for retinal isomers and on the role of these enzymes in the synthesis of RAs in specific tissues.  相似文献   
885.
Male Naga pig of India, a miniature breed is known for its meat quality and early puberty. No scientific efforts were made to verify the farmers' view that this breed reaches puberty at around 2 months of age. A preliminary study was, therefore, conducted with the objectives: (a) to find out the age at puberty based on mature spermiogram and in vivo pregnancy and (b) to record the sperm morphology in different parts of the epididymis. Animals were selected from two different age groups: group I aged 53 days and 2.4 kg and group II of 85 days and 3.0 kg. Semen samples collected from different sections of epididymis were analyzed for sperm motility, live spermatozoa, and morphological abnormalities. Motility increased (P<0.01) and live spermatozoa and total morphological abnormalities decreased (P<0.001) from caput through cauda epididymis in both the groups. Sperm motility, live spermatozoa and morphologically normal spermatozoa in each section of the epididymis were higher (P<0.01) in group II than I. Boars with >60% progressive motility, >70% live spermatozoa, <15% total morphological abnormalities and <10% abnormal acrosomes in cauda epididymal spermatozoa were considered mature spermiogram. As per this definition, pigs of group II had only mature spermiogram. In vivo pregnancy confirmation indicated that Naga boar could impregnate female as early as 90 days of age. In conclusion, Naga boar attained puberty by not later than 3 months with 3.0 kg, which is the lowest body weight at puberty in this species reported so far, as reflected by mature epididymal spermiogram and in vivo pregnancy confirmation.  相似文献   
886.
In this whitepaper, the Manufacturing Technical Committee (MTC) of the Product Quality Research Institute has updated the 1997 Transdermal Drug Delivery Systems Scale-Up and Post Approval Change workshop report findings to add important new product development and control principles. Important topics reviewed include ICH harmonization, quality by design, process analytical technologies, product and process validation, improvements to control of critical excipients, and discussion of Food and Drug Administration's Guidance on Residual Drug in Transdermal and Related Drug Delivery Systems as well as current thinking and trends on in vitro-in vivo correlation considerations for transdermal systems.  相似文献   
887.
The authors describe the discovery of anti-mycobacterial compounds through identifying mechanistically diverse inhibitors of the essential Mycobacterium tuberculosis (Mtb) enzyme, pantothenate kinase (CoaA). Target-driven drug discovery technologies often work with purified enzymes, and inhibitors thus discovered may not optimally inhibit the form of the target enzyme predominant in the bacterial cell or may not be available at the desired concentration. Therefore, in addition to addressing entry or efflux issues, inhibitors with diverse mechanisms of inhibition (MoI) could be prioritized before hit-to-lead optimization. The authors describe a high-throughput assay based on protein thermal melting to screen large numbers of compounds for hits with diverse MoI. Following high-throughput screening for Mtb CoaA enzyme inhibitors, a concentration-dependent increase in protein thermal stability was used to identify true binders, and the degree of enhancement or reduction in thermal stability in the presence of substrate was used to classify inhibitors as competitive or non/uncompetitive. The thermal shift-based MoI assay could be adapted to screen hundreds of compounds in a single experiment as compared to traditional biochemical approaches for MoI determination. This MoI was confirmed through mechanistic studies that estimated K(ie) and K(ies) for representative compounds and through nuclear magnetic resonance-based ligand displacement assays.  相似文献   
888.
Late leaf spot (LLS) and rust have the greatest impact on yield losses worldwide in groundnut (Arachis hypogaea L.). With the objective of identifying tightly linked markers to these diseases, a total of 3,097 simple sequence repeats (SSRs) were screened on the parents of two recombinant inbred line (RIL) populations, namely TAG 24?×?GPBD 4 (RIL-4) and TG 26?×?GPBD 4 (RIL-5), and segregation data were obtained for 209 marker loci for each of the mapping populations. Linkage map analysis of the 209 loci resulted in the mapping of 188 and 181 loci in RIL-4 and RIL-5 respectively. Using 143 markers common to the two maps, a consensus map with 225 SSR loci and total map distance of 1,152.9?cM was developed. Comprehensive quantitative trait locus (QTL) analysis detected a total of 28 QTL for LLS and 15 QTL for rust. A major QTL for LLS, namely QTL(LLS)01 (GM1573/GM1009-pPGPseq8D09), with 10.27-62.34% phenotypic variance explained (PVE) was detected in all the six environments in the RIL-4 population. In the case of rust resistance, in addition to marker IPAHM103 identified earlier, four new markers (GM2009, GM1536, GM2301 and GM2079) showed significant association with the major QTL (82.96% PVE). Localization of 42 QTL for LLS and rust on the consensus map identified two candidate genomic regions conferring resistance to LLS and rust. One region present on linkage group AhXV contained three QTL each for LLS (up to 67.98% PVE) and rust (up to 82.96% PVE). The second candidate genomic region contained the major QTL with up to 62.34% PVE for LLS. Molecular markers associated with the major QTL for resistance to LLS and rust can be deployed in molecular breeding for developing groundnut varieties with enhanced resistance to foliar diseases. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9661-z) contains supplementary material, which is available to authorized users.  相似文献   
889.
Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied. In this study, we tested the acute effects of low doses of ethanol (~7 mM internal concentration) on Drosophila larvae. While ethanol did not affect locomotion or the response to an odorant, we observed that ethanol impaired associative olfactory learning when the heat shock unconditioned stimulus (US) intensity was low but not when the heat shock US intensity was high. We determined that the reduction in learning at low US intensity was not a result of ethanol anesthesia since ethanol-treated larvae responded to the heat shock in the same manner as untreated animals. Instead, low doses of ethanol likely impair the neuronal plasticity that underlies olfactory associative learning. This impairment in learning was reversible indicating that exposure to low doses of ethanol does not leave any long lasting behavioral or physiological effects.  相似文献   
890.
A new aquatic species of the family Lythraceae (Rotala tulunadensis) collected from the lateritic plateau at Permude, Kerala, India is described and illustrated. It is closely allied to R. pterocalyx A. Raynal, but differs in having larger leaves, calyx tube not stretching laterally to include the capsule, calyx without interjected folds in fruit and larger petals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号