首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1249篇
  免费   116篇
  2022年   16篇
  2021年   36篇
  2020年   18篇
  2019年   24篇
  2018年   28篇
  2017年   28篇
  2016年   36篇
  2015年   41篇
  2014年   45篇
  2013年   78篇
  2012年   73篇
  2011年   86篇
  2010年   38篇
  2009年   37篇
  2008年   47篇
  2007年   76篇
  2006年   45篇
  2005年   39篇
  2004年   49篇
  2003年   33篇
  2002年   30篇
  2001年   34篇
  2000年   29篇
  1999年   25篇
  1998年   12篇
  1997年   11篇
  1995年   9篇
  1994年   11篇
  1993年   7篇
  1992年   26篇
  1991年   28篇
  1990年   24篇
  1989年   26篇
  1988年   14篇
  1987年   12篇
  1986年   12篇
  1985年   16篇
  1984年   8篇
  1983年   7篇
  1981年   8篇
  1980年   6篇
  1979年   16篇
  1978年   16篇
  1977年   6篇
  1976年   6篇
  1973年   7篇
  1972年   10篇
  1971年   9篇
  1966年   7篇
  1964年   5篇
排序方式: 共有1365条查询结果,搜索用时 36 毫秒
231.
Förster resonance energy transfer (FRET) measurements based on fluorescence lifetime imaging microscopy (FLIM) are increasingly being used to assess molecular conformations and associations in living systems. Reduction in the excited-state lifetime of the donor fluorophore in the presence of an appropriately positioned acceptor is taken as strong evidence of FRET. Traditionally, cyan fluorescent protein has been widely used as a donor fluorophore in FRET experiments. However, given its photolabile nature, low quantum yield, and multiexponential lifetime, cyan fluorescent protein is far from an ideal donor in FRET imaging. Here, we report the application and use of the TSapphire mutant of green fluorescent protein as an efficient donor to mOrange in FLIM-based FRET imaging in intact plant cells. Using time-correlated single photon counting-FLIM, we show that TSapphire expressed in living plant cells decays with lifetime of 2.93 ± 0.09 ns. Chimerically linked TSapphire and mOrange (with 16-amino acid linker in between) exhibit substantial energy transfer based on the reduction in the lifetime of TSapphire in the presence of the acceptor mOrange. Experiments performed with various genetically and/or biochemically known interacting plant proteins demonstrate the versatility of the FRET-FLIM system presented here in different subcellular compartments tested (cytosol, nucleus, and at plasma membrane). The better spectral overlap with red monomers, higher photostability, and monoexponential lifetime of TSapphire makes it an ideal FRET-FLIM donor to study protein-protein interactions in diverse eukaryotic systems overcoming, in particular, many technical challenges encountered (like autofluorescence of cell walls and fluorescence of pigments associated with photosynthetic apparatus) while studying plant protein dynamics and interactions.Single- and dual-color fluorescence imaging with intrinsically fluorescent proteins is increasingly being used to study the expression, targeting, colocalization, turnover, and associations of diverse proteins involved in different plant signal transduction pathways (for review, see Fricker et al., 2006). Concurrent with the use of fluorescence-based cell biology, Förster resonance energy transfer (FRET) has emerged as a convenient tool to study the dynamics of protein associations in vivo. The technique exploits the biophysical phenomenon of nonradiative energy transfer from a donor fluorophore to an appropriately positioned acceptor at a nanometer scale (1–10 nm; Jares-Erijman and Jovin, 2003). In living cells, FRET occurs when two proteins (or different domains within a single protein) fused to suitable donor and acceptor fluorophores physically interact, thus bringing the donor and the acceptor within the favorable proximity for energy transfer (Immink et al., 2002; Bhat et al., 2006). This results in a decrease in the donor''s fluorescence intensity (or quantum yield [QY]) and excited-state lifetime (Gadella et al., 1999). Furthermore, if the acceptor molecule is a fluorophore, then FRET additionally results in an increase in the acceptor''s emission intensity (sensitized emission; Shah et al., 2001; Bhat et al., 2006).However, the exploitation and use of fluorescent marker proteins to study protein trafficking and associations in plants can be problematic because plant cells contain a number of autofluorescent compounds (e.g. lignin, chlorophyll, phenols, etc.) whose emission spectra interfere with that of the most commonly used green or red fluorescent protein fluorophores and/or their spectral variants. For example, lignin fluorescence in roots, vascular tissues, and cell walls of aerial plant parts interferes with imaging at wavelengths between 490 and 620 nm, whereas the chlorophyll autofluorescence in green aerial plant parts is prevalent between 630 and 770 nm (Chapman et al., 2005). Consequently, conventional imaging of GFP and its closest spectral variants (like cyan fluorescent protein [CFP] and yellow fluorescent protein [YFP]) is most likely to be problematic in roots, whereas red-shifted intrinsic fluorescent proteins (including monomeric red fluorescent protein and recently identified spectral variants like mStrawberry and mCherry) may be hard to discriminate in chloroplast-containing aerial tissues (Chapman et al., 2005). The problems get further compounded in FRET assays because the autofluorescence arising from phenols, lignin, and chlorophyll can limit the choice of fluorophores suitable for in planta FRET assays.CFP and YFP have been widely used as a donor-acceptor pair in in planta FRET measurements (Bhat et al., 2006; Dixit et al., 2006). However, in photophysical terms, this pair is less than ideal for FRET imaging. Both have broad excitation and emission spectra with a small Stokes shift (Chapman et al., 2005). Second, QY of CFP (QY = 0.4) is relatively lower than that of YFP (QY = 0.61), and thus a significantly higher (and rather cell damaging) amount of excitation energy is needed to induce FRET (Dixit et al., 2006). Additionally, CFP displays multiexponential lifetimes with a shorter (1.3 ns) and a longer (2.6 ns) component (Becker et al., 2006). Although the deviation from the single-component decay is reasonably small (Tramier et al., 2002; Becker et al., 2006), the shorter CFP lifetime component can erroneously be interpreted as being the result of lifetime reduction due to energy transfer. At the same time, weak or transient protein associations may get masked and thus remain undetected. Whereas the parental wild-type GFP is extremely photostable and shows a monoexponential decay pattern (excited-state lifetime 3.16 ± 0.03 ns; Striker et al., 1999; Volkmer et al., 2000; Shaner et al., 2005), its close spectral overlap with YFP makes it unsuitable as a donor in GFP-YFP FRET experiments. Likewise, wild-type or enhanced GFP (or YFP) as a donor to red-shifted monomers as acceptors is suboptimal because the 488-nm (or 514-nm) laser line commonly used to excite GFP (or YFP) cross excites most of the red monomers (e.g. mOrange, mStrawberry) because of their broad excitation spectra (Zapata-Hommer and Griesbeck, 2003; Shaner et al., 2004).Recently, TSapphire (Q69M/C70P/V163A/S175G; excitation/emission 399/511 nm), a variant of the Sapphire (T203I) mutant of wild-type GFP with improved folding properties and better pH sensitivity, was described (Zapata-Hommer and Griesbeck, 2003). The T203I mutation in TSapphire (and original Sapphire as well) abolishes the 475-nm excitation peak found in the wild-type GFP (Tsien, 1998). TSapphire is efficiently excited below 410 nm, which makes it ideal for studying plant protein dynamics and interactions because, at this wavelength, there is negligible excitation of the autofluorescing chlorophyll pigments. Furthermore, TSapphire also represents a good donor to red monomer acceptors that are negligibly excited at this wavelength (Shaner et al., 2004). Using a purified Zn2+ sensor with TSapphire and mOrange as a donor-acceptor pair, Shaner and colleagues demonstrated the ratiometric intramolecular FRET between the two fluorophores in vitro (Shaner et al., 2004). The sensor yielded a 6-fold ratiometric increase (562/514-nm mOrange/TSapphire emission ratio) upon Zn2+ binding.However, currently there are no reports demonstrating the application and use of TSapphire and monomeric red-shifted fluorophores as donor-acceptor FRET pairs to probe intermolecular protein-protein interactions in vivo. In this article, we demonstrate in vivo FRET-fluorescence lifetime imaging microscopy (FLIM) between the donor TSapphire and the acceptor mOrange. We show that TSapphire expressed in living plant cells decays with a monoexponential lifetime of 2.93 ± 0.09 ns, which is in agreement with the published lifetime for its parent wild-type GFP (3.2 ns; Striker et al., 1999; Volkmer et al., 2000). Furthermore, we demonstrate intramolecular FRET-FLIM between chimerically linked TSapphire and mOrange (with a 16-amino acid linker in between). When fused to genetically known interacting proteins and expressed in intact living cells, the donor and the acceptor fluorophores show energy transfer in different subcellular compartments indicative of intermolecular protein-protein interactions. These results validate the versatility of the proposed in vivo FRET-FLIM assay based on the donor TSapphire and the acceptor mOrange, which turns out to work with both soluble and membrane proteins.  相似文献   
232.
233.
Trophoblast differentiation and formation of the placenta are important events linked to post-implantation embryonic development. Models mimicking the biology of trophoblast differentiation in a post-implantation maternal microenvironment are needed for understanding disorders like placental-ischemia or for applications in drug-screening, and would help in overcoming the ethical impasse on using human embryos for such research. Here we attempt to create such a model by using embryoid bodies (EBs) and a biomimetic platform composed of a bilayer of fibronectin and gelatin on top of low-melting agarose. Using this model we test the hypothesis that cystic-EBs (day 30) that resemble blastocysts morphologically, are better sources as compared to noncytic EBs (day 10), for functional trophoblast differentiation; and that the Rho kinases inhibitor Y27632 can enhance this differentiation. Non/cytic EBs with/out Y27632 were grown on this platform for 28 days, and screened from secretion and expression of trophoblast and other lineage markers using ECLIA, RT-PCR, and Immunofluorescence. All EBs attached on this surface and rapidly proliferated into hCG and progesterone (P2) secreting functional trophoblast cells. However, the cells derived from cytic-EBs and cytic-EBs+ Y27632 showed the maximum secretion of these hormones and expressed IGF2, supporting our hypothesis. Also Y27632 reduced extraembryonic endoderm and trophoblast lineage differentiation from early noncystic-EBs, whereas, it specifically enhanced the induction of trophoblast and multinucleated syncitiotrophoblast differentiation from late cystic-EBs. In vivo trophoblast differentiation can be replicated in fibronectin based biomaterials, using cytic-EBs and by maneuvering the Rho-ROCK pathways. Response of EBs to a compound may vary temporally, and determination of their right stage is crucial for applications in directed-differentiation or drug-screening.  相似文献   
234.
235.

Background  

A large number of genetic variations have been identified in rice. Such variations must in many cases control phenotypic differences in abiotic stress tolerance and other traits. A single feature polymorphism (SFP) is an oligonucleotide array-based polymorphism which can be used for identification of SNPs or insertion/deletions (INDELs) for high throughput genotyping and high density mapping. Here we applied SFP markers to a lingering question about the source of salt tolerance in a particular rice recombinant inbred line (RIL) derived from a salt tolerant and salt sensitive parent.  相似文献   
236.
Forty-four soybean genotypes with different photoperiod response were selected after screening of 1000 soybean accessions under artificial condition and were profiled using 40 SSR and 5 AFLP primer pairs. The average polymorphism information content (PIC) for SSR and AFLP marker systems was 0.507 and 0.120, respectively. Clustering of genotypes was done using UPGMA method for SSR and AFLP and correlation was 0.337 and 0.504, respectively. Mantel's correlation coefficients between Jaccard's similarity coefficient and the cophenetic values were fairly high in both the marker systems (SSR = 0.924; AFLP = 0.958) indicating very good fit for the clustering pattern. UPGMA based cluster analysis classified soybean genotypes into four major groups with fairly moderate bootstrap support. These major clusters corresponded with the photoperiod response and place of origin. The results indicate that the photoperiod insensitive genotypes, 11/2/1939 (EC 325097) and MACS 330 would be better choice for broadening the genetic base of soybean for this trait.  相似文献   
237.
Fenugreek (Trigonella foenum‐graecum) seeds, used as a condiment, are documented for health benefits including amelioration of abnormalities in lipid homeostasis due to its hypolipidemic properties. However, molecular mechanisms underlying the hypolipidemic effect of fenugreek seeds remain obscure. In this study, hypolipidemic effect of a novel thermostable extract of fenugreek seeds (TEFS) was evaluated in vitro by employing differentiating and differentiated 3T3‐L1 cells, and HepG2 cells cultured in normal or sterol‐enriched conditions. Hypolipidemic effect was studied by quantifying decrease in accumulation of fat or by western blot analysis of adipogenic and lipogenic factors. At molecular level, TEFS inhibited accumulation of fat in differentiating and differentiated 3T3‐L1 cells via decreased expression of adipogenic factors such as peroxisome proliferators activated‐receptor‐γ (PPAR‐γ), sterol regulatory element‐binding protein‐1 (SREBP‐1), and CAAT element‐binding proteins‐α (c/EBP‐α). We also show that following TEFS treatment, cellular triglycerides (TGs), and cholesterol concentrations decreased significantly (P < 0.05) in HepG2 cells via reduced expression of SREBP‐1, at mRNA as well as protein level. Under sterol enriched condition, TEFS upregulated low‐density lipoprotein receptor (LDLR) expression resulting in enhanced LDL uptake. Treating fat supplement fed C57BL6/J mice with TEFS for 15 days resulted in decrease of serum TG, LDL‐cholesterol (LDLc), and body weight in a dose‐ and time‐dependent manner (P < 0.05). Results indicate that hypolipidemic effect of TEFS is due to inhibition of fat accumulation and upregulation of LDLR. Taken together, the study suggests that TEFS may have potential application in the management of dyslipidemia and its associated metabolic disorders.  相似文献   
238.
Complex biological systems exhibit a property of robustness at all levels of organization. Through different mechanisms, the system tries to sustain stress such as due to starvation or drug exposure. To explore whether reconfiguration of the metabolic networks is used as a means to achieve robustness, we have studied possible metabolic adjustments in Mtb upon exposure to isoniazid (INH), a front-line clinical drug. The redundancy in the genome of M. tuberculosis (Mtb) makes it an attractive system to explore if alternate routes of metabolism exist in the bacterium. While the mechanism of action of INH is well studied, its effect on the overall metabolism is not well characterized. Using flux balance analysis, inhibiting the fluxes flowing through the reactions catalyzed by Rv1484, the target of INH, significantly changes the overall flux profiles. At the pathway level, activation or inactivation of certain pathways distant from the target pathway, are seen. Metabolites such as NADPH are shown to reduce drastically, while fatty acids tend to accumulate. The overall biomass also decreases with increasing inhibition levels. Inhibition studies, pathway level clustering and comparison of the flux profiles with the gene expression data indicate the activation of folate metabolism, ubiquinone metabolism, and metabolism of certain amino acids. This analysis provides insights useful for target identification and designing strategies for combination therapy. Insights gained about the role of individual components of a system and their interactions will also provide a basis for reconstruction of whole systems through synthetic biology approaches.  相似文献   
239.
Introduction: Human serum albumin (HSA) is a multifaceted protein with vital physiological functions. It is the most abundant plasma protein with inherent capability to bind to diverse ligands, and thus susceptible to various post-translational modifications (PTMs) which alter its structure and functions. One such PTM is glycation, a non-enzymatic reaction between reducing sugar and protein leading to formation of heterogeneous advanced glycation end products (AGEs). Glycated albumin (GA) concentration increases significantly in diabetes and is implicated in development of secondary complications.

Areas covered: In this review, we discuss in depth, formation of GA and its consequences, approaches used for characterization and quantification of GA, milestones in GA proteomics, clinical relevance of GA as a biomarker, significance of maintaining abundant levels of albumin and future perspectives.

Expert commentary: Elevated GA levels are associated with development of insulin resistance as well as secondary complications, in healthy and diabetic individuals respectively. Mass spectrometry (MS) based approaches aid in precise characterization and quantification of GA including early and advanced glycated peptides, which can be useful in prediction of the disease status. Thus GA has evolved to be one of the best candidates in the pursuit of diagnostic markers for prediction of prediabetes and diabetic complications.  相似文献   

240.
Resistin, a small secretory molecule, has been implicated to play an important role in the development of insulin resistance under obese condition. For the past few decades, it has been linked to various cellular and metabolic functions. It has been associated with diseases like metabolic disorders, cardiovascular diseases and cancers. Numerous clinical studies have indicated an increased serum resistin level in pathological disorders which have been reported to increase mortality rate in comparison to low resistin expressing subjects. Various molecular studies suggest resistin plays a pivotal role in proliferation, metastasis, angiogenesis, inflammation as well as in regulating metabolism in cancer cells. Therefore, understanding the role of resistin and elucidating its’ associated molecular mechanism will give a better insight into the management of these disorders. In this article, we summarize the diverse roles of resistin in pathological disorders based on the available literature, clinicopathological data, and a compiled study from various databases. The article mainly provides comprehensive information of its role as a target in different treatment modalities in pre as well as post-clinical studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号